
H. Cheval, L. Leuştean, A. Sipoş (Eds.):
7th Symposium on Working Formal Methods (FROM 2023)
EPTCS 389, 2023, pp. 110–119, doi:10.4204/EPTCS.389.9

© M.I. Plesa, M. Gheorghe & F. Ipate
This work is licensed under the
Creative Commons Attribution License.

Privacy-preserving Linear Computations in Spiking Neural P
Systems

Mihail-Iulian Plesa
University of Bucharest

Bucharest, Romania
Department of Computer Science

mihail-iulian.plesa@s.unibuc.ro

Marian Gheorghe
University of Bradford

Bradford, UK
School of Electrical Engineering and Computer Science

M.Gheorghe@bradford.ac.uk

Florentin Ipate
University of Bucharest

Bucharest, Romania
Department of Computer Science

florentin.ipate@unibuc.ro

Spiking Neural P systems are a class of membrane computing models inspired directly by biologi-
cal neurons. Besides the theoretical progress made in this new computational model, there are also
numerous applications of P systems in fields like formal verification, artificial intelligence, or cryp-
tography. Motivated by all the use cases of SN P systems, in this paper, we present a new privacy-
preserving protocol that enables a client to compute a linear function using an SN P system hosted
on a remote server. Our protocol allows the client to use the server to evaluate functions of the form
t1k+ t2 without revealing t1, t2 or k and without the server knowing the result. We also present an SN
P system to implement any linear function over natural numbers and some security considerations of
our protocol in the honest-but-curious security model.

1 Introduction

Membrane computing (or P systems) is a new model of computation inspired by how membranes work
and interact in living cells [17]. There are several variants of the model e.g. neural P systems, cell P
systems, tissue P systems, etc., [29, 15, 12]. P systems have generated new perspectives on the P vs NP
problem, being used to efficiently solve hard problems [27, 3, 7, 28]. There are also multiple applications
of P systems in various fields like formal verification, artificial intelligence, or cryptography [30].

In this work we used a special type of P systems called Spiking Neural P systems (SN P systems for
short) [12]. SN P systems are inspired by biological neurons. There are also numerous variants of SN
P systems: SN P systems with astrocytes, SN P systems with communication on request, SN P systems
with polarization, SN P systems with colored spikes, etc., [16, 14, 25, 23].

Although there are many theoretical aspects and simulations in the literature, to gain the maximum
efficiency of these systems, they must be implemented on dedicated hardware [1]. If these systems are
implemented at a large scale, they will have to be accessed remotely in the cloud. This raises privacy
concerns about data uploaded to the server that hosts the P system. This paper approaches the problem
of confidentiality in SN P systems by describing a protocol that allows a client to perform a simple linear
computation using an SN P system that is served remotely without revealing private information.

http://dx.doi.org/10.4204/EPTCS.389.9
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/


M.I. Plesa, M. Gheorghe & F. Ipate 111

1.1 Related work

Besides the theoretical work, there are also many applications of P systems. In [22] the authors propose a
new key agreement protocol based on SN P systems. In [8, 10, 11] the authors describe how to implement
the RSA algorithm in the framework of membrane computing. One ingenious way of applying P systems
is shown in [24] which presents an algorithm to break the RSA encryption. There are also applications
in artificial intelligence. In [2] the authors present a survey of the learning aspects in SN P systems.
Clustering algorithms have also been developed in the framework of membrane computing [21, 20, 19].
Image processing is another common application of P systems [4, 26, 5].

1.2 Our contribution

In this paper, we present a protocol that allows a client to perform a linear computation using an SN
P system hosted on a server without revealing any private data. The SN P system computes functions
of the form t1k + t2 over natural numbers. The client must retrieve from the server the result of the
computation without the server knowing t1, t2 or k. Also, the server must not learn the value t1k+ t2.
To enable privacy-preserving computations on the server side, we use the ElGamal cryptosystem and its
homomorphic properties [6]. We also provide an SN P system that computes any linear function over
natural numbers and some security considerations of our protocol. The paper is organized as follows:
in Section 2 we present the background on the SN P system and homomorphic encryption. In Section
3, we show an SN P system that computes linear functions over the natural numbers. In Section 4, we
introduce our protocol and some security considerations. Section 5 is left for the conclusions and further
directions.

2 Preliminaries

In this section, we briefly present the Spiking Neural P systems (SN P systems) and the cryptographic
algorithm used in our protocol. We stress some useful properties of the encryption scheme.

2.1 Spiking Neural P systems

A Spiking Neural P system (SN P system) of degree m ≥ 1 is defined as the following construct:

Definition 2.1. Π = (O,σ1,σ2, . . . ,σm,syn, i0) where:

• O = {a} is the alphabet. The symbol a denotes a spike.

• σi, 1 ≤ i ≤ m represents a neuron. Each neuron is characterized by the initial number of spikes
denoted by ni ≥ 0 and the finite set of rules denoted by Ri: σi = (ni,Ri).

• Each rule can be of the following two forms:

1. E/ar → a; t where E is a regular expression over the alphabet O, r ∈N∗ represents the current
number of spikes in the neuron and t ≥ 0 is the refractory period. This type of rule is called
a firing rule.

2. as → λ where s ≥ 1 is the current number of spikes in the neuron and λ is a special symbol
that denotes an empty set of spikes. This type of rule is called a forgetting rule.

• syn ⊆ {1,2, . . . ,m}×{1,2, . . . ,m} is the set of synapses between neurons. No neuron can have a
synapse to it i.e. (i, i) /∈ syn ∀ 1 ≤ i ≤ m.



112 On Privacy in Spiking Neural P Systems

• i0 represents the output neuron.

A neuron can fire using the firing rule E/ar → a; t only if it contains n spikes such that an ∈ L(E)
and n ≥ r where L(E) is a language defined in the following way:

• L(λ ) = {λ}

• L(a) = {a} ∀a ∈ O

• L((E1)∪ (E2)) = L(E1)∪L(E2)

• L((E1)(E2)) = L(E1)L(E2)

• L
(
(E1)

+)= L(E1)
+

for all regular expressions over the alphabet O.
After firing, r spikes are consumed. A firing rule that is applied when the neuron contains exactly r

spikes i.e. L(E) = {ar}, is simply denoted as ar → a; t.
At the neuron level, all rules are applied sequentially, but the system as a whole evolves with maxi-

mum parallelism i.e. if a rule can be applied in a neuron then that rule will be applied.
At a certain point, a neuron can be firing, spiking, or closed. If a neuron applies the firing rule

E/ar → a; t at moment q then the neuron will send a spike to all the neurons to which it is connected by
synapses at moment q+ t. At times q+ 1,q+ 2, . . .q+ t − 1 the neuron will be in the refractory period
i.e. the neuron will not receive or send any spikes. When neuron σi is spiking, the spikes are replicated
in such a way that each neuron σ j with (i, j) ∈ syn receives one spike although the number of spikes
consumed by σi is exactly r.

When a forgetting rule as → λ is applied in a neuron, s spikes are removed from that neuron. A
neuron can apply a forgetting rule only if the number of spikes is exactly s.

There are several ways in which we can record the output of an SN P system:

• The moments of time at which the output neuron i0 sends a spike i.e. if the neuron i0 releases
spikes at the moments q1,q2 . . . then the output of Π is the sequence q1,q2 . . ..

• The interval between the moments at which the output neuron i0 sends a spike i.e. if the neuron i0
releases spikes at the moments q1,q2 . . . then the output of Π is the sequence q2 −q1,q3 −q2, . . .

An SN P system is constructed using the principle of minimal determinism i.e. at a certain moment
in time, either a firing or a forgetting rule is applied without being able to choose which of the two types
of rules is applied [12].

2.2 Homomorphic encryption

In this work, we use the ElGamal cryptosystem [6]. The security of the encryption scheme is based on
the computational Diffie-Hellman assumption (CDH). Moreover, the scheme achieves semantic security
based on the decisional Diffie-Hellman assumption (DDH) i.e. the scheme is randomized. Randomiza-
tion implies that when encrypting the same message multiple times, each resulting ciphertext will be
different. A consequence of this property is the fact that an attacker cannot distinguish two plaintexts by
analyzing the corresponding ciphertext with non-negligible probability. The scheme works over a group
G of order q with a generator g. We now proceed to the description of the cryptosystem:

• The key generation algorithm denoted by KeyGen generates a key pair i.e. a private key and the
corresponding public key. The algorithm takes the following steps:



M.I. Plesa, M. Gheorghe & F. Ipate 113

1. Generate a random integer x ∈ {1,2, . . .q−1}.

2. Compute h := gx.

3. Output the public key h and the corresponding private key x.

• The encryption algorithm denoted by Ency
h encrypts a plaintext m ∈ G using the public key h and

a random number y ∈ {1,2, . . . ,q−1}. The algorithm performs the following steps:

1. Computes s := hy.

2. Computes c1 := gy and c2 := m · s.

3. Outputs the ciphertext c := (c1,c2).

• The decryption algorithm denoted by Decx takes as input a ciphertext c = (c1,c2) and decrypts it
under the private key x. The algorithm is composed of the following steps:

1. Computes s := cx
1.

2. Computes s−1, the inverse of s in the group G.

3. Computes the plaintext m := c2 · s−1.

4. Outputs the plaintext m.

The proof of correctness is straightforward:

c2 · s−1 = c2 · c−x
1 = m ·hy ·g−xy = m ·g−xy ·gxy = m (1)

The encryption of a message m ∈ G can be summarized by the following two equations:

c1 = gy (2)

c2 = m ·hy (3)

The scheme is homomorphic with respect to multiplication. Let c = (c1,c2) and c′ = (c′1,c
′
2) be the

encryptions of two plaintexts m and m′ under the same public key h i.e. c = Ency
h (m) and c′ = Ency

h (m
′).

We define the following two operations:

1. Let c⊙ c′ = (c1 · c′1,c2 · c′2) be the multiplication of two ciphertexts. The result of this operation is
another ciphertext that encrypts the sum between m and m′:

c1 · c′1 = gy ·gy′ = gy+y′ (4)

c2 · c′2 = m · s ·m′ · s′ = m ·m′ ·hy ·hy′ = m ·m′ ·hy+y′ (5)

From 4 and 5 we can see that c⊙ c′ = (c1 · c′1,c2 · c′2) is a ciphertext that encrypts m ·m′ under the
public key h.

2. Let c⊗ k = (c1,c2 · k) be the multiplication between a ciphertext and a constant k. The result of
this operation is a ciphertext that encrypts the product between m and k as it can be seen from 6
and 7:

c1 = gy (6)

c2 · k = m · s · k = (m · k) · s = (m · k)hy (7)



114 On Privacy in Spiking Neural P Systems

3. When c1 = c′1 i.e. y = y′, we can also define the addition between two ciphertexts as follows:
c⊕ c′ = (c1,c2 + c′2). The result of this operation is a ciphertext that encrypts the sum between m
and m′:

c1 = gy (8)

c2 + c′2 = m · s+m′ · s =
(
m+m′) · s = (

m+m′) ·hy (9)

It is important to notice that when y = y′ the scheme is no longer semantically secure. Although an
attacker who observes the two ciphertexts c and c′ could not recover any of the plaintexts, it could
determine additional information about them e.g. whether they are different. In many scenarios,
this is not acceptable but in this work, we will use the ⊕ operation. All the messages encrypted
with the same random y are not critical i.e. the impact of the lack of semantic security does not
affect the security of the protocol in which the encryption scheme is used.

3 SN P system to compute linear functions

In this section, we describe an SN P system that computes functions of the form t1k+ t2 over natural
numbers.

a2k−1

a+/a → a; t1 −1

σ1

a
a → a;0

σ2

ak → a; t2 −1

σ3

Figure 1: SN P system to compute linear functions

Let ΠAdd (t1, t2,k) = {{a},σ1,σ2,σ3,synadd ,σ2} be the SN P system that computes the linear func-
tion t1k+ t2, t1, t2 ∈ N with the following components:

• The alphabet is made from a single symbol {a} that denotes a spike.

• There are three neurons: σ1,σ2 and σ3 with the following firing rules:

1. For σ1 the firing rule is a+/a → a; t1 −1.
2. For σ2 the firing rule is a → a;0.
3. For σ3 the firing rule is ak → a; t2 −1.

• The set of synapses synadd is the set {(1,3) ,(3,2)}.

• The output neuron is σ2.

Initially σ1 has 2k−1 spikes, σ2 has 1 spike and σ3 has no spikes. Since σ2 has no refractory time
and one spike, it will release it in the first step of the computation. During the first step, σ1 will be firing.
Since its refractory period is t1 − 1 during the time steps 2,3, . . . t1 − 1 the neuron will be closed i.e. it



M.I. Plesa, M. Gheorghe & F. Ipate 115

will not receive or send any spikes. In step t1 the neuron will send one spike to σ3 and fire again. Thus
σ1 fires every t1 steps consuming one spike and sending one spike to σ3. σ3 will fire when it acumulates
k spikes from neuron σ1. Since σ1 fires one spikes every t1 steps, at time step, k · t1 σ3 will receive the
kth spike. At the moment t1 · k+1, σ3 will fire. The refractory period of this neuron is t2 −1 thus at the
steps t1 · k+2, t1 · k+3, . . . , t1 · k+ t2 −1 it will be closed and it will release one spike to σ2 at t1 · k+ t2.
Since σ3 has no refractory period, it will release the spike at the moment t1 · k+ t2 +1. At this point, the
number of spikes left in σ1 is k−1 because it already sent k spikes to neuron σ3 and the initial number
of spikes was 2k− 1. The neuron will continue to send spikes to σ3 at the appropriate time steps until
the spikes run out. The neuron σ3 will never fire again since it can no longer accumulate k spikes. σ2
will never fire again either since it will no longer receive the spike from σ3. Thus, after σ1 exhausts all
the spikes, the computation will stop. There are two moments when the output neuron σ2 fires: 1 and
t1 ·k+ t2 +1. Thus, the result of the computation i.e. the difference between the time points at which the
output neuron fires, is t1 · k+ t2. The ΠAdd (t1, t2,k) system is depicted in Figure 1.

4 Privacy-preserving computations in SN P systems

In this section, we describe our protocol which enables the running of an SN P system to compute linear
functions in a privacy-preserving way. We also make some remarks regarding security.

4.1 The protocol

There are two actors in the protocol:

1. The Server: it can instantiate and run an SN P system of the form ΠAdd (t1, t2,k) for any integers
t1, t2 and k.

2. The Client: it wants to evaluate the linear function t1 · k+ t2 using the system hosted by the Server
without revealing any of inputs t1, t2 or k.

The protocol uses the holomorphic properties of the ElGamal cryptosystem to allow the client to use
the server without revealing the inputs of the SN P system. There are 7 steps:

1. The Client will use the KeyGen algorithm to generate a key pair: h and x.

2. The Client will use the encryption algorithm Ency
h to encrypt t1, t2 and k. We denote by ct1 =(

ct1
1 ,c

t1
2

)
,ct2 =

(
ct2

1 ,c
t2
2

)
and ck =

(
ctk

1 ,c
k
2

)
the encryptions of t1, t2 and k:

• ct1 =
(
ct1

1 ,c
t1
2

)
= Ency1

h (t1)
• ck =

(
ck

1,c
k
2

)
= Ency2

h (k)

• ct2 =
(
ct2

1 ,c
t2
2

)
= Ency1+y2

h (t2)

3. The Client will store locally ct1
1 ,c

t2
1 and ck

1 and send to the server ct1
2 ,c

t2
2 and ck

2.

4. The Server will instantiate and run an SN P system of the form ΠAdd
(
ct1

2 ,c
t2
2 ,c

k
2

)
.

5. After the computation stops, the Server will return to the client the result of the computation i.e.
c2 = ct1

2 · ck
2 + ct2

2 .

6. The Client will compose a new ciphertext c = (c1,c2) where c1 = ct1
1 · ck

1.

7. The Client will decrypt the ciphertext c using the algorithm Decx and retrived the result of the
computation i.e. t1 · k+ t2.



116 On Privacy in Spiking Neural P Systems

We now prove that the ciphertext computed in step 6 of the protocol is a valid ElGamal ciphertext that
correctly decrypts to the final result of the computation i.e. t1 · k+ t2. Let c′ be the following ciphertext:

c′ =
(

c1,c
t1
2 · ck

2

)
(10)

Since c1 = ct1
1 · ck

1 we can write c′ as:

c′ =
(

ct1
1 · ck

1,c
t1
2 · ck

2

)
(11)

The ciphertext c′ represents the multiplication between the ciphertexts ct1 and ck:

c′ = ct1 ⊙ ck (12)

Since c and c′ use the same randomess i.e. c1, we can write c as the sum between the ciphertext c′

and ct2 :
c = c′⊕ ct2 (13)

In conclusion, we can express c as a composition of valid ElGamal ciphertexts which is also a valid
ElGamal ciphertext:

c =
(

ct1 ⊙ ck
)
⊕ ct2 (14)

The ciphertext
(
ct1 ⊙ ck

)
represents the encryption of t1 · k. When we add this ciphertext with ct2

using the ⊕ operation, the resulting ciphertext will be the encryption of t1 · k+ t2 which is the result of
the computation performed over plaintext data. Figure 2 depicts our protocol.

Since the SN P system works over natural numbers, we can use G = Zq for a large prime q.

4.2 Security considerations

We analyze our protocol in the honest-but-curious security model [18]. In this model, we assume that
the adversary is the Server. There are two properties of the adversary:

1. Curious: the Server will try to find information about the underlying plaintexts. In our case, these
are the parameters of the SN P system: t1, t2, and k.

2. Honest: the Server will respect the protocol and it will complete every step. It will not modify in
any way the messages received or sent to the Client.

The underlying encryption scheme i.e. the ElGamal cryptosystem is semantically secure given the
DDH assumption as long as each ciphertext is generated using different randomness [9]. The security of
the scheme can be illustrated using the following game. We suppose that the attacker runs in probabilistic
polynomial time and has access to an encryption oracle that receives as input a plaintext and returns the
corresponding ciphertext:

• The attacker chooses as many plaintexts as it wants and encrypts them using the oracle. For each
ciphertext, the attacker knows the corresponding plaintext.

• The attacker chooses two plaintext m0 and m1 and send them to the oracle.

• The oracle will generate a random bit b and return the encryption of mb.

• The attacker outputs the bit b.
The scheme is secure as long as the attacker cannot output the correct bit with non-negligible probability.

Given the fact that the Client encrypts each parameter of the SN P system using the ElGamal cryp-
tosystem with different randomness, the Server cannot learn any information about them with non-
negligible probability.



M.I. Plesa, M. Gheorghe & F. Ipate 117

Public parameters:
G,g,q

Client

KeyGen

ct1 ,ct2 ,ck

c = (c1,c2)

Decx (c)

Server

ΠAdd
(
ct1

2 ,c
t2
2 ,c

k
2

)
c2 = ct1

2 · ck
2 + ct2

2

ct1
2 ,c

t2
2 ,c

k
2

c2

Figure 2: Privacy-preserving linear function computation using SN P systems

5 Conclusions and further directions of research

In this paper, we presented a protocol for performing privacy-preserving computation over SN P systems.
There are two actors involved: the client and the server. The server hosts an SN P system that computes
linear function over natural numbers i.e. t1k+ t2. The client uses the protocol to retrieve the result of the
computation without revealing t1, t2 or k and without the server knowing the result of the calculation. We
presented an SN P system that computes any linear function over natural numbers and also some security
considerations about our protocol which is based on the ElGamal cryptosystem.

There are several directions of research. The first one is to give formal proof of the security of the
protocol. Although the protocol is secure at first sight, we must prove it by reducing the security of it
to the security of the underlying cryptosystem. The second direction of research is to enable complex
computation on SN P systems in a privacy-preserving way. The third direction is to use dedicated cryp-
tosystems e.g. fully homomorphic encryption schemes which are created to enable privacy-preserving
computations [13]. The challenge here is to map the operations performed over encrypted data to the
operations performed by the SN P system. We should also consider using other privacy-enhancing tech-
nologies e.g. secure multi-party computation or differential privacy to enable private computations over
SN P systems. Another direction of research is to implement the protocol and perform the appropriate
benchmarking to study its efficiency and communication overhead in practice.

5.0.1 Acknowledgements

This research was supported by the European Regional Development Fund, Competitiveness Operational
Program 2014-2020 through project IDBC (code SMIS 2014+: 121512).



118 On Privacy in Spiking Neural P Systems

References

[1] Alberto Arteta Albert, Ernesto Díaz-Flores, Luis Fernando de Mingo López & Nuria Gómez Blas (2021):
An in vivo proposal of cell computing inspired by membrane computing. Processes 9(3), p. 511,
doi:10.3390/pr9030511.

[2] Yunhui Chen, Ying Chen, Gexiang Zhang, Prithwineel Paul, Tianbao Wu, Xihai Zhang, Haina Rong &
Xiaomin Ma (2021): A Survey of Learning Spiking Neural P Systems and A Novel Instance. International
Journal of Unconventional Computing 16.

[3] Erzsébet Csuhaj-Varjú, Marian Gheorghe, Alberto Leporati, Miguel Ángel Martínez-del Amor, Linqiang Pan,
Prithwineel Paul, Andrei Păun, Ignacio Pérez-Hurtado, Mario J Pérez-Jiménez, Bosheng Song et al. (2022):
Membrane computing concepts, theoretical developments and applications. In: Handbook of Unconventional
Computing: VOLUME 1: Theory, World Scientific, pp. 261–339, doi:10.1142/9789811235726_0008.

[4] Daniel Díaz-Pernil, Miguel A Gutiérrez-Naranjo & Hong Peng (2019): Membrane computing and image
processing: a short survey. Journal of Membrane Computing 1, pp. 58–73, doi:10.1007/s41965-018-00002-
x.

[5] Daniel Díaz-Pernil, Francisco Pena-Cantillana & Miguel A Gutiérrez-Naranjo (2013): A parallel algo-
rithm for skeletonizing images by using spiking neural P systems. Neurocomputing 115, pp. 81–91,
doi:10.1016/j.neucom.2012.12.032.

[6] Taher ElGamal (1985): A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE transactions on information theory 31(4), pp. 469–472, doi:10.1109/TIT.1985.1057074.

[7] Songhai Fan, Yiyu Gong, Gexiang Zhang, Yun Xiao, Haina Rong, Prithwineel Paul, Xiaomin Ma, Han Huang
& Marian Gheorghe (2021): Implementation of Kernel P Systems in CUDA for Solving NP-hard Problems.
International Journal of Unconventional Computing 16.

[8] Ganbat Ganbaatar, Dugar Nyamdorj, Gordon Cichon & Tseren-Onolt Ishdorj (2021): Implementation of RSA
cryptographic algorithm using SN P systems based on HP/LP neurons. Journal of Membrane Computing 3,
pp. 22–34, doi:10.1007/s41965-021-00073-3.

[9] Oded Goldreich (2004): Foundations of Cryptography, Volume 2. Cambridge university press Cambridge,
doi:10.1017/CBO9780511721656.

[10] Ping Guo & Wei Xu (2016): A family P system of realizing RSA algorithm. In: Bio-inspired Computing–
Theories and Applications: 11th International Conference, BIC-TA 2016, Xi’an, China, October 28-30, 2016,
Revised Selected Papers, Part I 11, Springer, pp. 155–167, doi:10.1007/978-981-10-3611-8_16.

[11] Ping Guo & Wei Xu (2017): Implementation of RSA algorithm based on P system. Journal of Computational
and Theoretical Nanoscience 14(9), pp. 4227–4235, doi:10.1166/jctn.2017.6723.

[12] Mihai Ionescu, Gheorghe Păun & Takashi Yokomori (2006): Spiking neural P systems. Fundamenta infor-
maticae 71(2-3), pp. 279–308.

[13] Paulo Martins, Leonel Sousa & Artur Mariano (2017): A survey on fully homomorphic encryption: An
engineering perspective. ACM Computing Surveys (CSUR) 50(6), pp. 1–33, doi:10.1145/3124441.

[14] Linqiang Pan, Gheorghe Păun, Gexiang Zhang & Ferrante Neri (2017): Spiking neural P sys-
tems with communication on request. International journal of neural systems 27(08), p. 1750042,
doi:10.1142/S0129065717500423.

[15] Linqiang Pan & Mario J Pérez-Jiménez (2010): Computational complexity of tissue-like P systems. Journal
of Complexity 26(3), pp. 296–315, doi:10.1016/j.jco.2010.03.001.

[16] Linqiang Pan, Jun Wang & Hendrik Jan Hoogeboom (2012): Spiking neural P systems with astrocytes.
Neural Computation 24(3), pp. 805–825, doi:10.1162/NECO_a_00238.

[17] Gheorghe Păun (2000): Computing with membranes. Journal of Computer and System Sciences 61(1), pp.
108–143, doi:10.1006/jcss.1999.1693.

https://doi.org/10.3390/pr9030511
https://doi.org/10.1142/9789811235726_0008
https://doi.org/10.1007/s41965-018-00002-x
https://doi.org/10.1007/s41965-018-00002-x
https://doi.org/10.1016/j.neucom.2012.12.032
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1007/s41965-021-00073-3
https://doi.org/10.1017/CBO9780511721656
https://doi.org/10.1007/978-981-10-3611-8_16
https://doi.org/10.1166/jctn.2017.6723
https://doi.org/10.1145/3124441
https://doi.org/10.1142/S0129065717500423
https://doi.org/10.1016/j.jco.2010.03.001
https://doi.org/10.1162/NECO_a_00238
https://doi.org/10.1006/jcss.1999.1693


M.I. Plesa, M. Gheorghe & F. Ipate 119

[18] Andrew Paverd, Andrew Martin & Ian Brown (2014): Modelling and automatically analysing privacy prop-
erties for honest-but-curious adversaries. Tech. Rep.

[19] Hong Peng, Xiaohui Luo, Zhisheng Gao, Jun Wang, Zheng Pei et al. (2015): A novel clustering algorithm
inspired by membrane computing. The Scientific World Journal 2015, doi:10.1155/2015/929471.

[20] Hong Peng, Jun Wang, Mario J Pérez-Jiménez & Agustín Riscos-Núñez (2015): An unsupervised learning
algorithm for membrane computing. Information Sciences 304, pp. 80–91, doi:10.1016/j.ins.2015.01.019.

[21] Hong Peng, Jun Wang, Peng Shi, Agustín Riscos-Núñez & Mario J Pérez-Jiménez (2015): An auto-
matic clustering algorithm inspired by membrane computing. Pattern Recognition Letters 68, pp. 34–40,
doi:10.1016/j.patrec.2015.08.008.

[22] Mihail-Iulian Plesa, Marian Gheoghe, Florentin Ipate & Gexiang Zhang (2022): A key agreement protocol
based on spiking neural P systems with anti-spikes. Journal of Membrane Computing 4(4), pp. 341–351,
doi:10.1007/s41965-022-00110-9.

[23] Tao Song, Alfonso Rodríguez-Patón, Pan Zheng & Xiangxiang Zeng (2017): Spiking neural P systems
with colored spikes. IEEE Transactions on Cognitive and Developmental Systems 10(4), pp. 1106–1115,
doi:10.1109/TCDS.2017.2785332.

[24] Răzvan Vasile, Marian Gheorghe & Ionut, Mihai Niculescu (2023): Breaking RSA Encryption Protocol with
Kernel P Systems. doi:10.21203/rs.3.rs-2684530/v1.

[25] Tingfang Wu, Andrei Păun, Zhiqiang Zhang & Linqiang Pan (2017): Spiking neural P systems with
polarizations. IEEE transactions on neural networks and learning systems 29(8), pp. 3349–3360,
doi:10.1109/TNNLS.2017.2726119.

[26] Rafaa I Yahya, Siti Mariyam Shamsuddin, Salah I Yahya, Shafatnnur Hasan, Bisan Al-Salibi & Ghada Al-
Khafaji (2016): Image segmentation using membrane computing: a literature survey. In: Bio-inspired
Computing–Theories and Applications: 11th International Conference, BIC-TA 2016, Xi’an, China, October
28-30, 2016, Revised Selected Papers, Part I 11, Springer, pp. 314–335, doi:10.1007/978-981-10-3611-8_26.

[27] Claudio Zandron, Claudio Ferretti & Giancarlo Mauri (2001): Solving NP-complete problems using P sys-
tems with active membranes. In: Unconventional Models of Computation, UMC’2K: Proceedings of the
Second International Conference on Unconventional Models of Computation,(UMC’2K), Springer, pp. 289–
301, doi:10.1007/978-1-4471-0313-4_21.

[28] Ge-Xiang Zhang, Marian Gheorghe & Chao-Zhong Wu (2008): A quantum-inspired evolutionary algorithm
based on P systems for knapsack problem. Fundamenta Informaticae 87(1), pp. 93–116.

[29] Ge-Xiang Zhang & Lin-Qiang Pan (2010): A survey of membrane computing as a new branch of natural
computing. Chinese journal of computers 33(2), pp. 208–214, doi:10.3724/SP.J.1016.2010.00208.

[30] Gexiang Zhang, Mario J Pérez-Jiménez & Marian Gheorghe (2017): Real-life applications with membrane
computing. 25, Springer, doi:10.1007/978-3-319-55989-6.

https://doi.org/10.1155/2015/929471
https://doi.org/10.1016/j.ins.2015.01.019
https://doi.org/10.1016/j.patrec.2015.08.008
https://doi.org/10.1007/s41965-022-00110-9
https://doi.org/10.1109/TCDS.2017.2785332
https://doi.org/10.21203/rs.3.rs-2684530/v1
https://doi.org/10.1109/TNNLS.2017.2726119
https://doi.org/10.1007/978-981-10-3611-8_26
https://doi.org/10.1007/978-1-4471-0313-4_21
https://doi.org/10.3724/SP.J.1016.2010.00208
https://doi.org/10.1007/978-3-319-55989-6

	Introduction
	Related work
	Our contribution

	Preliminaries
	Spiking Neural P systems
	Homomorphic encryption

	SN P system to compute linear functions
	Privacy-preserving computations in SN P systems
	The protocol
	Security considerations

	Conclusions and further directions of research
	Acknowledgements


