Privacy-Preserving Inference for Public Neural
Networks

ol ) 1 — 1-5954-71 1 — — 2-4194
Mihail-Tulian Plesal[0000-0001-5954-7199] 'Rohert Poenaru![0000-0003-0692-4194]

1[0009-0001-3291-8241] 1

Sebastian Irimial, Simona Davi , and Andrei Farcasanu

Orange Services, Strada Gara Herastrau, Bucuresti 077190, Romania
mihail.plesa@orange.com

Abstract. In this paper, we present a lightweight symmetric encryption
scheme specifically designed to support homomorphic operations with re-
spect to constant multiplication. The scheme is based on the principles
of singularization, a moving target defense strategy designed to safe-
guard resource-constrained devices. It allows clients to outsource linear
computations to remote servers while requiring only a simple addition
operation for encryption, making it highly efficient and well-suited for
devices with limited resources. Additionally, we propose a remote key
generation protocol to address scenarios in which the client lacks the
computational capacity to generate keys. Building on this encryption
scheme, we develop a protocol for privacy-preserving neural network in-
ference, particularly for cases where the model parameters are public but
the network is accessed through a service. Experimental results demon-
strate that our protocol achieves greater efficiency compared to existing
approaches based on secure multi-party computation or homomorphic
encryption.

Keywords: Privacy - Neural Network Inference - Moving Target De-
fense - Cryptography

1 Introduction

Machine learning, particularly neural networks, is now widely integrated into
various software products. With large-scale deployments, especially in cloud-
based models, safeguarding the confidentiality of user input has become critically
important, driven by regulations such as the European General Data Protection
Regulation (GDPR). While protecting trained models was equally important in
the past, the emergence of openly available models has made this concern less
relevant.

Although solutions based on Secure Multi-Party Computation (SMPC) such
as CrypTen and Fully Homomorphic Encryption (FHE) like Concrete-ML of-
fer strong security guarantees, their current running times are not optimal for
practical applications.

Our approach is designed to address real-world requirements where model pa-
rameters are publicly available [18], but the client accesses the network itself as
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a service. In this setup, the client uploads their data to the service to utilize the
network. While running the network locally on the client side would ensure the
confidentiality of the client’s data, this approach is often impractical due to the
significant computational resources required. Existing privacy-enhancing tech-
nologies introduce substantial overhead to the performance of privacy-preserving
protocols [10, 13,9, 11], as they are typically designed to protect both the con-
fidentiality of the data and the model. However, in our scenario, protecting the
confidentiality of the model is unnecessary, allowing for a more efficient solution.

2 Related work

The field of privacy-preserving computations has advanced significantly, partic-
ularly in machine learning. Homomorphic encryption enables computations on
encrypted data, as demonstrated by CryptoNets [6].

SecureML [15] and SecureNN [7] leverage secure multi-party computation for
privacy-preserving machine learning. Slalom [19] uses Trusted Execution Envi-
ronments for secure DNN inference, while MiniONN [12] transforms neural net-
works into oblivious ones for private predictions. CodedPrivateML [17] employs
techniques like Lagrange coding for distributed privacy-preserving learning.

CrypTen [8] facilitates secure multi-party computation but faces computa-
tional overhead challenges. Concrete ML [20] uses Fully Homomorphic Encryp-
tion for privacy-preserving models, with performance limitations for deep neural
networks.

Contributions
Our contributions are as follows:

1. We propose a novel lightweight encryption scheme that supports homomor-
phic operations with respect to constant multiplication.

2. We present a protocol for remote key generation, specifically designed for sce-
narios where the device lacks sufficient computational resources to generate
keys locally.

3. We develop a protocol for privacy-preserving inference in feed-forward neural
networks and benchmark its performance against two prominent industry
solutions: Concrete-ML by Zama and CrypTen by Meta [20, §].

The paper is structured in the following way: in Section 3, we present some
preliminaries; in Section 4, we describe the encryption scheme; in Section 5, we
introduce the privacy-preserving protocol. Section 6 illustrates the experiments,
while Section 7 is left for the conclusions.

3 Preliminaries

3.1 Notations

We denote vectors using bold lower letters, matrices, and sets with upper letters,
and scalars using regular lower letters. For a vector x, we denote by x; the i-th
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component of x. We represent the length of x as |x|. We denote by s ﬁ S a
uniform random sampling of s from the set S. x- yT represents the inner product
between the row vector x and the column vector y. We represent by w x x or
wx the scalar multiplication between the vector x and the scalar w, i.e., given
X = (X1,X2,...,%Xp) and w, X X w = (X]W,XoW,...,Xp,w). We demote by [m]
the encryption of m. A function negl(n) is called negligible if for every positive
polynomial p(}), there exists an integer N such that for all n > N we have

negl(n) < NOR

3.2 Homomorphic encryption

A homomorphic encryption (HE) scheme enables computations to be performed
directly on encrypted data. The outcomes of these computations are ciphertexts
that correspond to the results of operations conducted on the plaintext data [1].
In this manner, the confidentiality of the data is ensured throughout the com-
putation process. An additive homomorphic encryption (AHE) scheme, defined
over modular integers, is naturally homomorphic with respect to constant mul-
tiplication. The structure of an AHE scheme is given in Figure 1. We suppose
that the AHE scheme used in this paper is IND-CPA secure [2].

Some AHE schemes include the Paillier cryptosystem [16] or the ElGamal
cryptosystem [4].

3.3 Neural network model

We model a feed-forward pre-trained neural network with ¢ layers as a function

f: R0 5 gl , represented by a sequential composition of linear and non-linear
functions:

f(xo) — ol o fll o g1 o £l-1] o L. o 5121 6 £12] o 51 o fl1] (XO) ;
where:

— xl0 ¢ R is the input vector.

_ gl . Rnw” — an for 1 < £ < L are linear functions, represented as
£l (x[E1)y = Wbk 4 bl where W € Rl a0 i € R0 are
the weight matrix and bias vector for layer ¢, respectively.

— ol R s R i5 the non-linear activation function of the layer, applied
element-wise.

— nl represents the number of input neurons of layer ¢ + 1.

Figure 2 displays a neural network with L layers. Each layer is fully connected
to the next layer. The input layer (orange) holds the input vector x[9 € RH[O],
the output layer (green) produces the final output vector x € RH[L], the hidden
layers perform an affine transformation (red) followed by the non-linear activa-
tion function applied element-wise (blue). Note that n is also the number of
outputs.
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An additive homomorphic encryption scheme is a tuple AHE = (KeyGen, Enc, Dec)
composed from the following algorithms:

1. KeyGen (1>\): The key generation algorithm receives as input the security

parameter and returns a public-private key pair (pk, sk).

2. Enc(pk,m): The encryption algorithm receives the plaintext message m and
the public key pk as inputs and outputs the ciphertext [m)].

3. Dec (sk, [m]): The decryption algorithm receives the ciphertext message [m]
and the secret key sk as inputs and outputs the plaintext m.

The scheme supports the following operations:

1. EvalAdd ([m1], [m2]):

This operation receives as inputs two ciphertexts [mj] and [ms] and returns
the ciphertext that encrypts the sum of the underlying plaintext, i.e., [m; +
mo].

2. EvalMulConstant ([m], o):

This operation receives as inputs a ciphertext [m] and a constant o and out-
puts a ciphertext that encrypts the product between the underlying plaintext
and the constant, i.e., [oam].

3. EncDotVec ([m],a): This operation receives as inputs a vector of ciphertexts
[m] and a vector of constants a and outputs a ciphertext that encrypts the dot
product between the underlying plaintext vector and the vector of constants,
ie., [m-al].

4. EncMatMult ([m], A, b): This operation receives as inputs a vector of cipher-
texts [m], a constant matrix A and a vector of constants b and outputs a
vector of ciphertexts that encrypts linear transformation induced by the con-
stant matrix and the vector of constants over the underlying plaintext vector,
ie., [Am+ b).

Fig. 1. Main structure of an AHE scheme

4 The encryption scheme

In this section, we introduce a symmetric encryption scheme based on the hard-
ness of the decisional subset-sum problem. The scheme is specifically designed to
enable lightweight encryption and decryption operations while supporting homo-
morphic properties for constant multiplication. This encryption scheme serves
as the foundation of our privacy-preserving inference protocol, which facilitates
the execution of a neural network without compromising the confidentiality of
the client’s input.

The proposed encryption scheme is based on the concept of singularization,
a recently introduced moving target defense strategy designed to protect crypto-
graphic implementations on resource-constrained devices [5, 14]. Singularization
aims to make every input to a running system unique, enhancing security by
introducing confusion and forcing attackers to continuously reassess the attack
surface, all without altering the system’s internal workings. Leveraging this strat-
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Fig. 2. A typical feed-forward neural network architecture.

egy, our encryption scheme introduces carefully designed noise to encrypt inputs,
enabling a neural network to perform inference on the underlying data without
modifying the neural network’s implementation. In contrast, traditional homo-
morphic encryption schemes [16,4] require operations in the ciphertext space
that differ from those in the plaintext space. This limitation prevents the direct
use of widely available and well-established neural network libraries for compu-
tations on encrypted data.

The proposed scheme uses only additions for encryption and decryption,
delegating resource-intensive multiplications to an external party. To address
memory demands during key generation, a remote key generation protocol is
introduced, ensuring security without impacting encryption performance. Key
features include:

1. The AHE scheme performs a constant number of encryptions during key
generation, independent of data size.
2. Keys can be generated in advance, prior to the encryption phase.

We provide formal proof of the security of the encryption scheme and the
remote key generation procedure.

The decisional subset sum problem. Given a multiset R = (r1,r2,...,1y)
with elements from a field F and an element s € F, the decisional subset set
problem (DSS for short) asks to determine whether there exists a subset R’ C R

such that > 1;=s.
ri€R’
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The DSS problem is conjectured to be NP-hard [3], i.e., given R, for all
probabilistic polynomial-time algorithms D there is a negligible function negl
such that:

PriR'CRs« > 1:D[Rys)=1] Pr|s&F:D(Rs)=1| < negl (|R))
riER’

4.1 The cryptosystem

The symmetric cryptosystem II = (KeyGen, Enc, Dec, Eval) is formally defined
in Figure 3. The correctness and homomorphic properties of the scheme are
established in Theorems 1 and 2. Proofs are omitted as they follow directly from
the definitions. The security is based on the DSS problem in Theorem 3. The
proof is deferred to the full version of the paper. The cryptosystem is assumed
to operate over a field .

Theorem 1 (Correctness). Given [m] < IL.Enc (s,m) and m’ + II.Dec (s, [m])
we have:
m’ =m

Theorem 2 (Homomorphism). Given [m] < II.Enc (s, m), [mw],se < IL.Eval (p, [m], w)
and m’ < T1.Dec (se, [mw]) we have:

m = mw

Theorem 3 (Security). The encryption scheme has indistinguishable encryp-
tions in the presence of an eavesdropper, supposing that the DSS problem is hard
with respect to the set of parameters P = {p1,p2,...,Pn}-

4.2 Remote key generation

The protocol enables a client to generate the secret key, s, without needing to
process the parameter vector, p, locally. The overall process is as follows: the
random secret vector, r, is encrypted using an additive homomorphic encryption
scheme and sent to the server. Upon receiving the encrypted vector, the server
computes the dot product between the encrypted vector and the public param-
eter vector of the scheme using II.EncDotVec. The server then returns the result
to the client, which decrypts it to retrieve the secret key, s. Notably, the remote
key generation protocol requires a constant number of AHE calls, regardless of
the size of the vector being encrypted.

The remote key generation protocol is described in Figure 4. The proofs of
correctness and security are deferred to the full version of the paper.

Theorem 4 (Correctness). The output of the protocol is the dot product be-
tween the secret random vector and the public parameters vector, i.e., r - p
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The cryptosystem is the tuple of algorithm IT = (KeyGen, Enc, Dec, Eval) composed
from:

1. Setup (1x): The setup algorithm takes as input the security parameter A

and generates a vector p consisting of n = poly()\) field elements, chosen
independently and uniformly at random. This vector p serves as the public
parameters of the scheme.

2. KeyGen (p): The key generation algorithm takes the parameter vector p as
input and produces the symmetric key s. The key is computed as the sum of
a randomly selected subset of elements from p:

s<—r-pT,r<§{0,1}n

3. Enc(s,m): The encryption algorithm takes as inputs the secret key s and the
plaintext message m. It outputs the ciphertext [m], computed as the sum of
the plaintext and the secret key:

[m] < m+s

4. Dec(s,[m]): The decryption algorithm takes as inputs the secret key s and
the ciphertext [m]. It recovers the plaintext m by subtracting the secret key
from the ciphertext:

m + [m]—s

5. Eval (p, [m], w): The evaluation algorithm takes as inputs the parameter vector
p, the ciphertext [m], and a plaintext constant w. It outputs the ciphertext
[mw] and the corresponding secret evaluation key:

[mw], se + [m]w, s X w

Fig. 3. The symmetric cryptosystem based on the subset sum problem

It is assumed that all parties are honest but curious, meaning they follow the
protocol specifications but are interested in obtaining additional information
beyond their designated outputs.

Theorem 5 (Security). The remote key generation protocol described in Fig-
ure 4 achieves the ideal functionality Fgenerate in the presence of honest but
curious adversaries.

5 Privacy-preserving neural network evaluation

We present a protocol for evaluating a publicly pre-trained neural network using
the proposed encryption scheme, involving a client and a server. The server hosts
the neural network, and the client’s input remains private.

The protocol divides neural network computations into linear and non-linear
categories. The client and server engage offline in the remote key generation pro-
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1. Setup and AHE Key Generation.
(a) The client runs the key generation algorithm of an AHE scheme:

pk, sk « AHE. KeyGen(lx)

(b) The server runs the setup algorithm of the symmetric encryption scheme
and sends the length of the parameter vector to the client:

p H.Setup(lx)

S—C:n=|p|
2. Symmetric Key generation.
(a) The client generates the secret random vector:

r & {0,1}"

(b) The client encrypts the secret random vector using the AHE scheme and
sends the ciphertexts to the server:

[r]; <~ AHE.Enc(pk,r;),V1 <i<n

C—S:r
3. Remote computation and result

(a) The server computes the dot product between the encrypted random
vector and the public parameters of the symmetric scheme and returns
the result to the client:

[r- pT] <+ EncDotVec([r], p)

S—C:[r-pT

(b) The client decrypts the result received from the server. The protocol
outputs the secret key :

s < AHE.Dec(sk, [r - p'])

Output s

Fig. 4. Remote key generation

tocol (Figure 4). For each layer 1 < ¢ <L, sl denotes the secret key encrypting
the input X[K’l], and S([fi] is the evaluation key for the i® row of the weight
matrix W[, The server performs the linear operation W] 4 bl over en-

crypted data using II.EncMatMult, interpreting matrix-vector multiplication as
dot products. This is supported by II.Eval (p, [x[e’”],Wi[e]) treating rows and

vectors as elements of R* "', The protocol is detailed in Figure 5. The proofs
of correctness and security are deferred to the full version of the paper.
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Ideal functionality Fgenerate

1. The client sends the secret random vector r to the TTP.
2. The TTP computes the dot product between r and the public parameters p.
3. The TTP returns the result, i.e., r - p to the client.

For each layer, 1 < £ < L of the neural network, the client and the server execute:

1. The client encrypts the input of the current layer and sends it to the server:

[x[efll]i + II.Enc (sm,xi[efl]) W1 <i<nll

C—S: [x[zfl]]

2. The server executes the linear operation of the layer over encrypted data and
sends the result to the client:

wllxlE1 4 )« 11.EncMatMult (x[“],w[f],bm)

S C: yl) = (Wlxle1 4 plf)

3. The client decrypts the result, applies the activation function associated with
the current layer, and repeats step 1:

v 1Dec (s, [y ) ,v1 <1 <l

y ol (31)

q

MO

The client retrieves the result of the inference as x[-I

(L]

Output x

Fig. 5. Our protocol on privacy-preserving neural network evaluation

Theorem 6 (Correctness). The result of the protocol described in Figure 5 is
the same as the result produced by the network run directly over plaintext data:

1 = ol o £l o .. o 11 o £l1] (x10))

where ¥ (xlE1)y = wltx [ 4 plld 1 <r <L,
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Ideal functionality ‘FprotOCOl

1. The client transmits the input vector x to TTP.
2. The TTP computes the output of the neural network.
3. The TTP sends the result of the inference to the client.

Theorem 7 (Security). The protocol described in Figure 5 achieves the ideal
Sfunctionality ]:protocol in the presence of honest but curious adversaries.

6 Experiments

We compared our protocol with two leading industry solutions: Concrete-ML
from Zama and CrypTen from Meta [20, 8]. The experiments were conducted
using an NVIDIA A100-SXM4-80GB GPU and an Intel Xeon Gold 6240R CPU.
The CPU was used for both the client and the server, while the GPU was only
on the server side. We analyzed both the running time and memory usage for
performing one image classification.

All solutions were tested using two models: VGG19 on images from the CI-
FARI10 dataset and a three-layer feed-forward neural network on images from
the MNIST dataset. At the time of writing, Concrete-ML does not support
GPU acceleration, so we were unable to test it with GPU support. Additionally,
Concrete-ML did not complete the large VGG19 model within a reasonable time
frame. Nevertheless, we highlight the fact that the solutions we chose to compare
with are tailored for use cases in which the confidentiality of the model must
also be preserved. This shows that our protocol is more suitable for practical
scenarios in which the model is public but exposed through a service that the
client can access.

The results are presented in Tables 1 and 2. Our solution is faster than both
Concrete-ML and CrypTen. Regarding GPU acceleration, our protocol did not
show a significant difference in running time, likely due to the large number
of memory swaps between the CPU and GPU. However, this indicates that
our protocol does not necessarily require a GPU to perform classifications in a
reasonable amount of time, which can be advantageous in situations where a
GPU is unavailable due to cost or other constraints.

Table 1. Benchmarks on the running time for one classification (seconds)

GPU CPU
Approach VGG19 FNN VGG19 FNN
Our approach 0.32706 0.0066 0.35709 0.00135
CrypTen 12.092 0.5152 129.823 7.261

Concrete-ML N/A N/A N/A 23.25063
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Table 2. Benchmarks on the memory for one classification (GB)

GPU CPU
Approach VGG19 FNN VGG19 FNN
Our approach 1.17 0.46 1.60 0.49
CrypTen 41.13 2.29 8.76 1.69
Concrete-ML N/A N/A N/A 5

7 Conclusions

This paper introduces a lightweight symmetric encryption scheme, homomorphic
for constant multiplication, designed for neural network evaluation. It ensures
indistinguishable encryptions under the decisional subset sum problem and in-
cludes a remote key generation mechanism to address memory challenges.

We propose a protocol for privacy-preserving neural network inference with
superior performance compared to Concrete-ML and CrypTen, supported by
formal security proofs.

Future work includes enabling privacy-preserving large language models, im-
proving efficiency in cryptographic methods like FHE, and secure multi-party
computation for public model parameters.
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