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1Abstract—Cloud computing is increasingly used. One main 

use of cloud computing is the running of a machine learning 
algorithm. Due to the large amount of data required for these 
algorithms, they can no longer be run on personal computers. 
Uploading personal data to the cloud automatically raises the 
issues of confidentiality of this data. In this paper, we show 
through a series of experiments that an order-preserving 
encryption algorithm can be applied to guarantee the 
confidentiality of the input of two well-known clustering 
algorithms: K-Means and DBSCAN. We show that K-Means 
can be modified to be applied over the encrypted data. We also 
proposed a slight improvement to an order-preserving 
encryption scheme to ensure that it is randomized, therefore 
increasing its security level. Finally, after studying the 
performance of clustering algorithms over encrypted data we 
show a practical application of this idea, namely the color 
reduction over an encrypted image. 
 

Index Terms—cloud computing, DBSCAN, order-preserving 
encryption, K-Means. 

I. INTRODUCTION 
Nowadays, cloud computing has starting to be used more 

and more often. Software as a service (SaaS) is probably the 
best-known application of cloud computing. SaaS allows 
third-party providers to host applications, that are available 
to the users over the internet. In recent years, the number of 
SaaS applications has increased. One such application is 
machine learning. Given the large amount of data required 
for a machine learning algorithm, running it on personal 
computers is becoming increasingly difficult and costly. 
Companies allow this type of software to be run in the cloud 
for certain costs. Some examples are IBM Watson Machine 
Learning, Microsoft Azure, Google Cloud AI or Amazon 
AWS Machine Learning [1-4]. Machine learning as a 
service is certainly more efficient for both programmers and 
users but it raises a major problem: data confidentiality. 
Normally, a machine learning algorithm requires a training 
stage before it can be used by users. In this step, the 
algorithm receives as input a large amount of data. For the 
algorithm to be useful, users must upload their data to the 
cloud where the model is running, which causes a privacy 
problem.  

Currently, there are two main solutions to this problem: 
homomorphic encryption and secure multi-party 
computation. Homomorphic encryption represents one type 
of encryption algorithms that allows calculations to be 
performed directly over the encrypted data. The programmer 
encrypts its data before uploading it to the cloud, trains the 
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model over the encrypted data, and exposes this model to 
the user. To use the model, the user encrypts its data, 
uploads it to the cloud, runs the model, and obtains the 
encrypted result. The user then will decrypt the result 
returned by the cloud. One framework able to use 
homomorphic encryption in machine learning problems is 
CryptoNets [5].  

In secure multi-party computation, a model allows several 
parties to calculate together the result of a function that 
receives inputs from each party, keeping the confidentiality 
of those inputs. One example of using secure multi-party 
computation in machine learning problem is tf-encrypted 
[6].   

In this paper, we propose a third solution to the problem 
of data confidentiality in machine learning problems. We 
focus on two unsupervised machine learning algorithms 
used for clustering: K-Means and DBSCAN. Our solution is 
to apply order-preserving encryption to encrypt the input of 
the clustering algorithm. The result we propose can be 
summarized by the following steps: 
1. The user locally encrypts the input of the algorithm and 

sends the encrypted data to a remote server. 
2. The server runs the algorithm over the encrypted data 

and send back the results to the user. 
Through a series of experiments, we show that the output 

of the algorithm running over the encrypted data is as good 
as the algorithm running over the plain data. Since no 
encryption oracle is involved, we are concerned only with 
ciphertext only attacks. As far as we know at the moment, 
this is the first paper proposing the idea of combining  
order-preserving encryption with the clustering algorithm to 
assure data confidentiality when the algorithm is running in 
the cloud. We also proposed improvement over a known 
order-preserving encryption scheme. The paper is structured 
as follows: in Section II we present the modified encryption 
scheme, in Section III we provide an introduction into 
clusterization algorithms, Section IV presents evaluation 
metrics for clustering algorithms, Section V is dedicated to 
experiments, Section VI presents an example of secure 
colour reduction, Section VII unfolds the conclusions 
drawn. 

II. THE ENCRYPTION SCHEME 
One of the best-known order-preserving encryption 

schemes and the one treated in this paper belongs to 
Boldyreva [7]. Let N be an integer and denote by [ ]N  the 

set { }1,2, , N… . The scheme defines the space of plaintexts 

as the set [ ]N  and the space of ciphertexts as the set [ ]M , 
M N>> . The core idea behind the scheme is to consider a 
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function [ ] [ ]:f N M→  such that [ ],x y N∀ ∈ , 

( ) ( )f x f y>  if x y> . The scheme is symmetric with a 
key size of 32 bytes. Every encryption key defines a unique 
function f . To encrypt a plaintext message [ ]n N∈  the 

function f is applied, obtaining the ciphertext ( )c f n= .  

Let ( ) [ ]:g Imf f N→  be the function that maps each 
element from the image of the function f to its 
corresponding element from the preimage, [ ]n N∀ ∈ , 

( )( )g f n n= . Since [ ]N  is the sets of the plaintexts, the 

preimage of the function 𝑓𝑓 is the set [ ]N  itself. To decrypt 

the ciphertext ( )c Imf f∈ , the function g  is applied, 

obtaining the plaintext ( )n g c= . One thing to note is that 
the decryption operation is not defined for all elements in 
the set [ ]M  but only for those belonging to the image of f .  

In this paper, we use a modified version of the Boldyreva 
scheme. The original scheme has two major drawbacks: it is 
deterministic and therefore suffers from an attack through 
which half of the plaintext bits can be recovered only from 
the cyphertext [8]. We address these two problems by 
slightly modifying the original scheme.  

The deterministic nature of the original scheme is a 
serious problem if the attacker knows the range of 
plaintexts. Suppose for example that the user encrypts a 
grayscale image. Each plaintext is an integer in the range 
[ ]0,255 . Since the scheme is order-preserving the attacker 
can deduce that the smallest ciphertext corresponds to a 
plaintext value of 0, the next smallest ciphertext corresponds 
to a plaintext value of 1, etc. In the case of image 
encryption, given the deterministic nature of the scheme, the 
ciphertextof a certain pixel will appear several times in the 
encrypted image. The fact that the attacker decrypts a single 
ciphertext implies that he will know several plaintext values 
from the encrypted image. If the scheme would be 
randomized, multiple encryptions of the same plaintext 
would result in multiple independent ciphertexts. 

In this section, we proposed a simple modification of the 
scheme to improve its security. Let ( ), ,GenB EncB DecB  be 
the key generation, encryption and decryption algorithms 
defined in the original version of the scheme.  

The key generation algorithm, GenB , is modified to 
return two keys: 1k  and 2k . The key 1k  is the output of 
GenB , where the second key 2k  is a 32 bytes randomly 
generated integer. We denoted the modified version of 
GenB  as Gen .  

The modified encryption algorithm denoted by Enc  
receives as input an integer m and the keys 1k  and 2k . To 
encrypt the plaintext message m Z∈ , Enc  generates a 
random integer, r, in the range [ ]20, 1k − . The ciphertext 

outputted by 
1 2,k kEnc  is the encryption of 2m k r∗ +  using 

EncB  and the key 1k  as in (1): 

( )
1 2 1, 2k k kEnc EncB m k r= ∗ +   (1) 

The modified decryption algorithm denoted by Dec  

receives as input a ciphertext c Z∈  and the keys 1k  and 2k . 
The ciphertext c is decrypted using DecB  and the key 1k . 
The value obtained is scaled down by a factor of 2k  as in 
(2): 

( )
1

1 2,
2

k
k k

DecB c
Dec

k

 
=  
  

 (2) 

Intuitively, each plaintext m is represented by a random 
integer chosen from the range [ ]2 2, 2 1k m k m∗ ∗ −∗ . In this 
way, the scheme is randomized without losing the classic 
order relations (<,=,>) over the  ). Given a ciphertext c, an 
attacker will now recover half of the bits of 2m k r∗ +  but 
since r is randomly chosen at each encryption, it will be 
harder for the attacker to recover bits of m. 

The idea behind our proposed modification is somewhat 
similar to that of LWE (Learning with Errors) encryption 
schemes: before encryption, we add a random error to the 
plaintext, large enough to increase the security of the 
original scheme but sufficiently small not to break the order 
relations between the ciphertexts [15]. 

To see how the security of the scheme is improved by our 
modification considered the following example. Suppose 
that the attacker knows that the plaintext space consists of 
two messages: 0m  and 1 0 1,m m m< . The attacker 
intercepts two ciphertexts: 0c  and 1c , 0 1c c< . Since the 
original scheme is deterministic and order-preserving the 
attacker can easily deduce that 0c  is the encryption of 0m  
and 1c  is the encryption of 1m . In our modified version, 
instead of directly encrypting𝑚𝑚𝑖𝑖 , we encrypt a random 
integer in the range [ ]2 2, 2 1i ik m k m∗ ∗ −∗  thus even if 

0 1c c< , they can represent the encryption of the same 
plaintext. The attacker can no longer deduce that 0c  is the 
encryption of 0m   and 1c  is the encryption of 1m . 

III. CLUSTERING ALGORITHMS 
Clustering algorithms are unsupervised machine learning 

algorithms that indicate the geometric structure of a set of 
points. In this paper, we consider two well-known clustering 
algorithms: K-Means and DBSCAN. Although each 
algorithm has its own specific input data, both of them 
receive as input a finite set of points { }1 2,, , n

NX x x x= … ⊂  . 

The general purpose of a clustering algorithm is to group the 
points from the input set into clusters. Let k be the  
number of clusters (in the case of K-Means this number is 
given as an input to the algorithm and in the case of 
DBSCAN the number if determined by the algorithm).  
Both algorithms output a set of labels { }1 2, , , ,n

NL l l l= … ⊂   

1 1il k i N≤ ≤ ∀ ≤ ≤  indicating the cluster to which each 
point belongs, the point ix X∈  belonging to the cluster 

il L∈ . In addition to the set of labels L, K-Means also 

returns a set of centroids, { }1 2, , , n
kC c c c= … ⊂  . Let 

{ }|i j jS x l i= = , 11 i k j N≤ ≤ ≤ ≤ , be the set of all points that 

belong to cluster i. The centroid ic  represent the arithmetic 
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mean of all points from the cluster i and is calculated in (3). 
The centroids can be further used in an algorithm like KNN 

1

j i

i j
i x S

c x
S

∈

= ∑   (3) 

In this paper, we propose a new strategy that allows 
running either of the two algorithms in the cloud without 
compromising the privacy of the input X. We are not 
concerned with the confidentiality of the other inputs 
parameters which the algorithms have. Our strategy involves 
encrypting every point of the input set and send that 
encrypted set into the cloud where the clustering algorithm 
will receive it as input. We prove by a series of experiments 
that the set of labels output by the algorithm run over the 
encrypted set are as good as those output by the algorithm 
run over the plain data.  

In the case of k-means, we prove experimentally that 
decrypting the centroids resulted from encrypted data is 
geometrically close (i.e. using a well-known metric) to the 
centroids determined by the algorithm over the plain data. 
The encryption scheme used in all experiments is the one 
presented in Section II. 

Let ( )1 2, , , np p p…  the coordinates of a point p X∈ . By 
definition, encrypting the point p involves encrypting each 
coordinate. Since the encryption function of a point is not 
defined in the scheme, we define the encryption of a point 
p X∈  of coordinates ( )1 2, , , ,n ip p p p… ∈  under the 

keys 1k  and 2k  generated with Gen  as in (4).  

( )

( ) ( ) ( )( )
1 2

1 2 1 2 1 2

,

, 1 , 2 ,, , ,

k k

k k k k k k n

EncP p

Enc p Enc p Enc p

=

= …
 (4) 

Similarly, the decryption of point is defined in (5). 
( )

( ) ( ) ( )( )
1 2

1 2 1 2 1 2

,

, 1 , 2 ,, , ,

k k

k k k k k k n

DecP p

Dec p Dec p Dec p

=

= …
  

 (5) 

K-Means is one of the best-known clustering algorithms. 
There are many variants of the algorithm but the one used in 
this paper is the naive K-Means [9-12]. The input of the 
algorithm consists of a finite set { }1 2,, , n

NX x x x= … ⊂   

of N points and a natural number 0k >  representing the 
number of clusters to be formed. The algorithm outputs the 
coordinates of k centroids and assigns a label to each point 
in the set X that represents the cluster to which the point 
belongs. The procedure is iterative and consists of two main 

steps. Let ( ) ( ) ( ) ( ){ }1 2, , ,t t t t
kC c c c= … , ( ) ( ) ( ) ( ){ }1 2, , , ,t t t t

NL l l l= …  

( )1 1t
il k i N≤ ≤ ∀ ≤ ≤  be the sets of centroids and labels at 

iteration 𝑡𝑡.  
The first step of the algorithm is the assignment. In this 

step, for each point ix X∈ , 1 i N≤ ≤ , the distance from all 
centroids is computed and the label is updated to include the 
point in the cluster of the nearest centroid. Let ijd , 

1 1i N j k≤ ≤ ≤ ≤ , be the distance between the point ix  and 

centroid ( )1t
jc − . The label of ix  at iteration t, ( )t

il  is 

computed such that ( ) 1t
i

ijil
d d j k≤ ∀ ≤ ≤ . 

The second step of the algorithm is the update. In this 

step, the set ( )tC  is updated according to the set of labels 
( )tL  calculated in the first step. Let ( ) ( ){ }|t t

i j jS x l i= = , 

1 1i k j N≤ ≤ ≤ ≤ , the set of all points that belong to  

cluster i. Each centroid ( )1 ,1t
ic i k− ≤ ≤  is updated according 

to (6) 
( )

( )
( )

1

t
j i

t
i jt

i x S

c x
S ∈

= ∑   (6) 

For the first step, the set of centroids, ( )0C , is chosen 
randomly from the set n . The algorithm converges and 

stops when ( ) ( )1t tC C −= .  
Let encX  be the set of encrypted points in X. Since we 

apply the algorithm over the encrypted data the resulting 
centroids will be calculated over the ciphertexts space. For 
the decryption operation to be defined, the encrypted 
centroids must belong to the set of valid ciphertexts. To 
solve this problem, we propose a slight modification on the 
update step of the K-Means algorithm.  

In the original version of the algorithm, the centroid ( )t
ic  

is updated as the arithmetic means of all points that belong 
to cluster 𝑖𝑖. After this computation over cyphertexts, the 

updated centroid ( )t
ic  could be an invalid ciphertext (i.e. a 

ciphertext for which the decryption is not defined).  
Our solution to this problem is to approximate the 

updated centroid ( )t
ic  to the nearest point in the set encX . 

Since the entire set of points, encX , is composed of valid 

ciphertexts, it is certain that the updated centroid ( )t
ic  will 

also be a valid ciphertext. So, to update the ( )1t
ic −  centroid, 

the arithmetic mean value of all points that belong to cluster 
i is calculated and then it is approximated to the nearest 
point in the set encX . If p is the arithmetic mean obtained 
by (6) and jd , 1 j N≤ ≤ , the distance between the point p 

and ( )jenc x , then the updated the centroid ( )t
ic  will be 

calculated as ( )uenc x  such that 1u jd d j N≤ ∀ ≤ ≤ , 

1 u N≤ ≤ .  
DBSCAN is another well-known clustering algorithm 

[13]. Unlike K-Means, DBSCAN does not require the 
number of clusters to be known and does not return a set of 
centroids. It is also able to find noise points i.e. points that 
do not belong to any other cluster. There are several 
differences between K-Means and DBSCAN: 

1. DBSCAN works on non-globular data. 

2. DBSCAN produces clusters according to the density of 
points. 

3. K-Means is optimized according to least-squares while 
DBSCAN search density-connected regions of points. 

There are three inputs to the algorithm. The first input is a 
finite set { }1 2,, , n

NX x x x= … ⊂   of points that will be 
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clustered. The second input is a real number ε ∈  that 
specifies the radius of a neighbourhood of a point from  
the set X. The last parameter is a natural number M ∈  
that defined the minimum number of points needed in a 
neighbourhood such that it can be considered as a cluster. 
The output of the algorithm is the set of labels 

{ }1 2,, , NL l l l= …  assigned to each point.  

For each point p X∈  we define the neighbourhood of 

the point p as the set ( ) { }| pqV p q X dε ε= ∈ ≤  where pqd  

represents the Euclidean distance between the points  
p and q. A point p X∈  is called a core point if the set 

( )V pε  contains at least M points i.e. ( )V p Mε ≤ . A point 

q X∈  is a directly reachable point from a core point p if 

pqd ε≤ . The definition of a directly reachable point is 

similar to the definition of a neighbourhood. The difference 
between the two is that the set ( )V pε  is defined for every 
point p X∈  while a directly reachable point is defined only 
from a core point.  

DBSCAN maintains an internal variable C which initially 
is 0 and is incremented each time a new cluster is found. At 
each iteration, the algorithm identifies the first point, 

ix X∈  that does not have a label assigned to it. If the set 

( )iV xε  has more than M elements (i.e. ( )iV x Mε ≥ ) then 

a new cluster has been found and the variable C is 
incremented, the point ix  receiving the label C, il C= . If 
the neighborhood of the point ix  does not contain more than 
M  elements, then the point is considered a noise point. For 
each other point jx X∈ , j i≠ , if the point jx  is noise or 

does not have a label, if ( )jV x Mε ≥  then the point jx  

also receive the label C.  

IV. EVALUATION METRICS OF CLUSTERING ALGORITHMS 

Let { }1 2,, , n
NX x x x= … ⊂   be the input data in plain 

form and ( ) ( ) ( ){ }1 2, , ,enc NX encP x encP x encP x= … ⊆   

be the encrypted input data. Both algorithms analyzed in this 
paper return a set of labels. Let { }1 2, , , n

NL l l l= … ⊂    
be the set of labels returned by the algorithm over  
the plain data, X. Similarly, we define 

{ }_1 _ 2 _, , , n
enc enc enc enc NL l l l= … ⊂   as the set of labels 

returned by the algorithm over the encrypted input encX . To 
evaluate the performance of the clustering algorithm over 
the encrypted data we will use the Adjusted Rand index or 
ARI [16]. 

ARI is an evaluation metric used for clustering  
algorithms when the real clustering is known. Let 

{ }1 2, , , n
NC c c c= … ⊂  , 11 1ic n i N≤ ≤ ∀ ≤ ≤  be the set of 

labels known to be truth. Let { }1 2, , , n
NK k k k= … ⊂  , 

21 1ik n i N≤ ≤ ∀ ≤ ≤  be the set of labels returned by the 
clustering algorithm. Here 1n  and 2n  are the ground truth 

number of clusters respectively the number of clusters found 
by the algorithm. Let x be the number of pairs of points 
( ), ,1 , ,i j i j N i j≤ ≤ ≠  that have the same label both in the 
set C and in the set K i.e. i jc c=  and i jk k= . Let y be the 

number of pairs of points ( ), ,1 , ,i j i j N i j≤ ≤ ≠  that have 
different labels in the set C and different labels in the set K 
i.e. i jc c≠  and i jk k≠ . The ARI index is calculated in (7): 

[ ]
( ) [ ]

,
max

RI E RI
ARI

RI E RI
−

=
−

  (7) 

where [ ]E X  is the expected value of the random variable X  
and RI is calculated in (8): 

2
N

x yRI
C
+

=   (8) 

ARI values are bounded in the interval [ ]1,1− . A uniform 
random assignment of labels by the algorithm will result in an 
ARI value of 0. An ARI value of –1 indicates independent 
clustering i.e. the set C and K are not correlated with each 
other. An ARI value of 1 indicates the two clustering are 
identical i.e. any pair of points that are part of the same cluster 
according to the real clustering will be part of the same cluster 
according to the clustering given by the algorithm.  

Given the fact that K-Means returns a set of centroids in 
addition to the set of labels, we have to define an evaluation 
metric to compare the centroids given by K-Means over the 
plain data with those given by the algorithm over the 
encrypted data.  

Let { }11 2, n
t nC C C C= … ⊂   be the set of centroids 

known to be true (i.e. obtained on plain data clustering) and 

{ }21 2, n
k nC C C C= … ⊂   be the set of centroids returned 

by K-Means. Intuitively, to analyze the performance of the 
algorithm we must compute some kind of distance between 
the sets tC  and kC . Since we are working in a Euclidean 
space which is a metric space, we can use the Hausdorff 
distance.  

Let ( ),d x y  be the Euclidean distance between the points 

, nx y∈ . The Hausdorff distance between two finite 

subsets X and Y of n
 , ( ),Hd X Y  is defined in (9) 

( ) ( ) ( ), max max min , ,max min ,H
y Y x Xx X y Y

d X Y d x y d x y
∈ ∈∈ ∈

 
=  

 
  (9) 

If the two set of centroids, tC  and kC  are identical then 

( ), 0H t kd C C = . 

V. THE EXPERIMENTS 
In the first experiment we study how the proposed 

modification of the original K-Means algorithm impacts its 
performance, using the two metrics presented in the 
previous section. We consider different sets of points and 
for each set we calculate the labels and the centroids given 
by the original algorithm and those returned by the modified 
version. We then use the ARI metric to compare the two sets 
of labels and Hausdorff distance to compare the two sets of 
centroids. 
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In this experiment we generate 100 sets of points denoted 
as 1 2 100, , ,X X X… . The set ,1 100iX i≤ ≤  is partition into 

10i ∗  clusters. Each set has a total of 5000 points. The 
coordinates of each centroid are randomly generated in the 

interval 8 82 ,2 −  . The standard deviation of each cluster is 

set to 5. To generate the clusters, we used the function 
make_blobs from the scikit-learn library [14].   

In Figure 1 we plot how the Hausdorff distance changes 
according to the number of clusters. Similarly, in Fig. 2 we 
show how ARI changes as the number of clusters increases. 
From Figure 1 it can be seen that the Hausdorff distance 
increases as the number of clusters increases. This means 
that the centroids resulted from the modified version of  
k-means tend to distance from the centroids determined by 
the original version of k-means. Since all the points have 

coordinates in the range 8 82 ,2 −  , the biggest distance 

between two points is 524288 724≈ . In our experiment, 
the Hausdorff distance is a maximum 20 which is about 
2.7% of the biggest distance. 

The ARI, plotted in Fig. 2, decreases as the number of 
clusters increases. This means that the labels assigned by the 
modified version of k-means tends to behave more like 
uniform randomly assigned labels.   

 
Figure 1. Hausdorff distance between the two groups of points 

 
Figure 2. ARI between the two sets of labels 

Overall, it can be concluded that the efficiency of the 
modified k-means decreases compared to that of the original 

version. However, in the previous experiment, the standard 
deviation of a cluster is a constant value of 5. Intuitively, the 
results of the first experiment can be explained by the fact 
that as the number of clusters increases, because the 
standard deviation is constant, the distance between the 
clusters becomes small thus the clusters can no longer be 
differentiated. A visual example of this is given in Fig. 3 
where the whole set of 5000 points was grouped into  
500 clusters each with a standard deviation of 5 was plotted. 

To compensate for this situation, we choose to adapt the 
standard deviation according to the number of clusters.  
If N is the number of clusters then the standard deviation of 
each cluster, Nσ  is calculated in (10): 

1
0.02N N

σ =
∗

 (10) 

The motivation behind (10) is to decrease the standard 
deviation of each cluster as the number of clusters increases. 
In this way, the space between clusters will increase with 
their number. Fig. 4 shows the clustering of 5000 points  
into 500 clusters but his time the standard deviation was 
adjusted according to (10). 

 
Figure 3. 500 clusters with a standard deviation of 5 

 
Figure 4. 500 clusters with a standard deviation of 0.1 

To study the impact that standard deviation adjustment 
has on Hausdorff distance and ARI, the first experiment was 
repeated under the same conditions, only this time the 
standard deviation was updated according to (10). Fig. 5 and 
Fig. 6 show the new values for the Hausdorff distance and 
ARI. From the plots displayed in the Fig. 5 and Fig. 6, it can 
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be observed that both the Hausdorff distance and ARI keep 
their values almost constant. This time, the Hausdorff 
distance is 0.2% from the biggest distance between two 
points. This means that the centroids resulted from the 
modified k-means are very closed to those returned by the 
original version. The value of ARI is very close to 1 which 
shows that the clustering made by the modified algorithm is 
almost identical to that made by the original algorithm. 

We can conclude that as long as the clusters are separable, 
our modification does not impact the performance of the 
algorithm. When the clusters are not separable it is known 
the k-means is not a suitable choice for clustering. 

We can conclude that our modification does not impact 
the performance of the algorithm provided that the input set 
can be clustered using k-means (i.e. the input data is 
geometrically separable). 

 
Figure 5. Hausdorff distance after cluster standard deviation was updated 

 
Figure 6. ARI after cluster standard deviation was updated 

Our second experiment studies the performance of  
k-means over the encrypted data. As we have specified in 
Section III, to be able to run k-mean over the encrypted data 
we must use our modified version of the algorithm. In the 
second experiment we will study the impact of data 
encryption with respect to clustering performance. For 
simplicity, we called the modified version of k-means  
mk-means. We will study the ARI between the labels 
returned by the mk-means over the plain set of points and 
labels returned by mk-means over the encrypted set of 
points. The centroids returned by the mk-means over the 

encrypted set of points are decrypted and then the Hausdorff 
distance between the decrypted centroids and the centroids 
returned by mk-means over the plain set is calculated. 

As in the previous experiment, 100 sets of points  
were generated: 1 2 100, , ,X X X… . Each set, , 1 100iX i≤ ≤  
contains 1000 points partitioned into i cluster. The standard 
deviation of each set was calculated according to (10).  
Fig. 7 and Fig. 8 show the Hausdorff distance and ARI, 
respectively. 

Figure 7. Hausdorff distance 
 

Figure 8. ARI index 

The Hausdorff distance between the decrypted centroids 
calculated using mk-means over the encrypted data and the 
centroids resulted from the same algorithm over the plain 
data is about 0.2% from the biggest distance that can be 
defined in this experiment. 

The ARI between the labels of the encrypted data and the 
labels of the plain data is almost 1 which means that the 
clusters generated by mk-means over the encrypted data are 
almost identical to those generated over the plain data. 

Although k-means is an efficient algorithm, there are 
cases in which the configuration of the points is not globular 
thus k-means will not produce the expected clustering. In 
those cases, DBSCAN is a much more appropriate 
algorithm. Fig. 9 shows an example of clustering using  
k-means and DBSCAN. There are 1000 grouped into  
4 clusters. To generate the points, a linear transformation 
with randomly generated values from a normal distribution 
was applied to the output of _make blobs  function. In this 
case, the clustering produced by DBSCAN is more relevant 
than the one produced by k-means. 
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Figure 9. K-Means and DBSCAN vs on non-globular clusters 

Another example when DBSCAN produces better results 
than k-means is shown in Fig. 10. This time the points were 
generated  using _make circle  function from sklearn library. 

 
Figure 10. K-Means and DBSCAN vs on circular clusters 

In our third experiment we study the performance of 
DBSCAN over the encrypted data. In this experiment, we 
generate 100 sets of points: 1 2 100, , ,X X X…  each set iX  
containing 1000 points. To create non-globular clusters, a 
2 2×  linear transformation with random values from a 
normal distribution was applied to each point. Each set was 
encrypted and then DBSCAN was applied over the plain set 
and the encrypted set. The ARI between the two sets of 
labels was calculated and plotted in Fig. 11. 

 
Figure 11. ARI index 

The ARI is almost 1 regardless of the number of clusters 
which means that the algorithm can be applied over the 
encrypted data and will produce the same clustering as if 
applied over the plain data. In addition to the clustering 
itself, this experiment also studied the number of clusters 

produced by the algorithm. Although each set iX  was 
generated to contain i clusters, DBSCAN can produce a 
different number. Fig. 12 shows the relation between the 
number of clusters initially generated and the number of 
clusters produced by DBSCAN. 

 
Figure 12. The number of clusters produced by DBSCAN 

This experiment shows that the relation between the two 
number of clusters is almost linear with a few exceptions 
when DBSCAN produced a very different number of 
clusters than the original one.  

VI. COLOUR REDUCTION OVER ENCRYPTED IMAGES 
The colour reduction is a technique that reduces the 

number of colours in an image while maintaining much of 
the information of it. In this section we present an 
experiment that studies colour reduction on encrypted 
images as a direct application of our modified version of k-
means. Let I be an nxm  RGB image. If each pixel has a 
unique colour, then we need 3nxmx  bytes of memory to 
store the image I. Colour reduction allows the representation 
of the same image I with a small number of colours 

3k nxmx  without affecting its semantic meaning. 
Let X be the set of all colours that appear in the image I. 

Since colour is a triplet of natural numbers, we can view 

{ }1 2, , , nX X X X= …  as a set of points from 3 , 3X ⊂  .  
Colour reduction starts by applying the k-means 

algorithm over the set X. Let { }1 2, , , ,kC C C C k n= …   

and { }1 2, , , nL L L L= …  be the sets of centroids respectively 
labels returned by k-means. The next step of the algorithm 
consists of replacing each point from the set X with its 
centroids: the point iX  is replaced by the point 

, , 1
iLC i i n∀ ≤ ≤ . The number of colours is reduced from n, 

the original number of colours of the image to k, the number 
of centroids. 

To maintain the confidentiality of the image, it will be 
encrypted using the scheme presented in Section II. As 
shown in Section V, our modified version of k-means 
performed well over encrypted data both from the 
perspective of ARI and from the perspective of Hausdorff 
distance. Since colour reduction is simply a call to k-means, 
we can reduce the number of colours directly from the 
encrypted image by applying our modified version of the 
algorithm, mk-means. 
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In the fourth experiment we evaluate the performance of 
colour reduction over encrypted images by applying the 
algorithm to both the original and the encrypted image. We 
compare the decrypted image with the original using PSNR, 
a metric that calculates how different two images are.  

For this experiment we use the TensorFlow Flower 
Dataset. The dataset contains a total 3669 colour images 
from which 100 were randomly selected. Each selected 
image was resized to 32 32×  pixels and the number of 
colours was reduced to 64.  

The experiment shows that the average of the 100 PSNR 
values is 34.27 with a standard deviation of 3.66.  

To better illustrate the performance of our algorithm, 
Table I shows the results for five concrete images from 
TensorFlow Flower Dataset. The images were resized to 
128 128× . For each image the number of colours was 
reduced to 64. 
 

TABLE I. THE PSNR OBTAINED FOR FIVE IMAGES  
Name of the image PSNR 

4914793782_d0ea760791.jpg 34.05 
5840476802_dfa40deb1f_m.jpg 36.79 
3697780051_83e50a6dd1_m.jpg 40.78 
15381511376_fd743b7330_n.jpg 39.28 
14335561523_f847f2f4f1.jpg 34.69 

VII. CONCLUSIONS AND FURTHER DIRECTION OF RESEARCH 
In this paper, we showed by a series of experiments that 

order-preserving encryption can be applied to solve the 
problem of data confidentially when they represent input for 
a clustering algorithm. In the first part, we show how the 
Boldyreva encryption scheme can be randomized to obtain a 
better security level. We then propose a slight modification 
of the k-means algorithm to be able to run over the 
encrypted data generated by our scheme. 

The first experiment showed that modification made to 
the original K-Means algorithm very slightly affects its 
performance. The second experiment showed that the results 
of our K-Means proposal over the encrypted data are as 
good as those obtained applying the same clustering method 
over the plain data.  

The third experiment proved that the DBSCAN 
performance over the encrypted data is as good as that 
obtained by the same algorithm over the plain data. Our 
fourth experiment presented a practical application of  
k-means over the encrypted data, namely colour reduction of 
an encrypted image.  

Overall, from an experimental point of view, we can 
conclude that order-preserving encryption is a suitable 
solution to the problem of input privacy of the clustering 
algorithm. A further direction of research is to perform more 

experiments using other encryption schemes of this type. 
Another direction of research is the formal study of the 
applicability of this type of encryption scheme together with 
unsupervised machine learning algorithms. 
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