Journal of Military Technology

Vol. 3, No. 2, Dec. 2020

Privacy-Preserving Clustering: A New Approach
Based on Invariant Order Encryption

Mihail-lulian PLESA and Cezar PLESCA

Abstract—Cloud computing is increasingly used. One main
use of cloud computing is the running of a machine learning
algorithm. Due to the large amount of data required for these
algorithms, they can no longer be run on personal computers.
Uploading personal data to the cloud automatically raises the
issues of confidentiality of this data. In this paper, we show
through a series of experiments that an order-preserving
encryption algorithm can be applied to guarantee the
confidentiality of the input of two well-known clustering
algorithms: K-Means and DBSCAN. We show that K-Means
can be modified to be applied over the encrypted data. We also
proposed a slight improvement to an order-preserving
encryption scheme to ensure that it is randomized, therefore
increasing its security level. Finally, after studying the
performance of clustering algorithms over encrypted data we
show a practical application of this idea, namely the color
reduction over an encrypted image.

Index Terms—cloud computing, DBSCAN, order-preserving
encryption, K-Means.

I. INTRODUCTION

Nowadays, cloud computing has starting to be used more
and more often. Software as a service (SaaS) is probably the
best-known application of cloud computing. SaaS allows
third-party providers to host applications, that are available
to the users over the internet. In recent years, the number of
SaaS applications has increased. One such application is
machine learning. Given the large amount of data required
for a machine learning algorithm, running it on personal
computers is becoming increasingly difficult and costly.
Companies allow this type of software to be run in the cloud
for certain costs. Some examples are IBM Watson Machine
Learning, Microsoft Azure, Google Cloud Al or Amazon
AWS Machine Learning [1-4]. Machine learning as a
service is certainly more efficient for both programmers and
users but it raises a major problem: data confidentiality.
Normally, a machine learning algorithm requires a training
stage before it can be used by users. In this step, the
algorithm receives as input a large amount of data. For the
algorithm to be useful, users must upload their data to the
cloud where the model is running, which causes a privacy
problem.

Currently, there are two main solutions to this problem:
homomorphic  encryption and  secure  multi-party
computation. Homomorphic encryption represents one type
of encryption algorithms that allows calculations to be
performed directly over the encrypted data. The programmer
encrypts its data before uploading it to the cloud, trains the
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model over the encrypted data, and exposes this model to
the user. To use the model, the user encrypts its data,
uploads it to the cloud, runs the model, and obtains the
encrypted result. The user then will decrypt the result
returned by the cloud. One framework able to use
homomorphic encryption in machine learning problems is
CryptoNets [5].

In secure multi-party computation, a model allows several
parties to calculate together the result of a function that
receives inputs from each party, keeping the confidentiality
of those inputs. One example of using secure multi-party
computation in machine learning problem is tf-encrypted
[6].

In this paper, we propose a third solution to the problem
of data confidentiality in machine learning problems. We
focus on two unsupervised machine learning algorithms
used for clustering: K-Means and DBSCAN. Our solution is
to apply order-preserving encryption to encrypt the input of
the clustering algorithm. The result we propose can be
summarized by the following steps:

1. The user locally encrypts the input of the algorithm and
sends the encrypted data to a remote server.

2. The server runs the algorithm over the encrypted data
and send back the results to the user.

Through a series of experiments, we show that the output
of the algorithm running over the encrypted data is as good
as the algorithm running over the plain data. Since no
encryption oracle is involved, we are concerned only with
ciphertext only attacks. As far as we know at the moment,
this is the first paper proposing the idea of combining
order-preserving encryption with the clustering algorithm to
assure data confidentiality when the algorithm is running in
the cloud. We also proposed improvement over a known
order-preserving encryption scheme. The paper is structured
as follows: in Section Il we present the modified encryption
scheme, in Section Il we provide an introduction into
clusterization algorithms, Section IV presents evaluation
metrics for clustering algorithms, Section V is dedicated to
experiments, Section VI presents an example of secure
colour reduction, Section VIl unfolds the conclusions
drawn.

Il. THE ENCRYPTION SCHEME

One of the best-known order-preserving encryption
schemes and the one treated in this paper belongs to

Boldyreva [7]. Let N be an integer and denote by [N] the
set {1,2,...,N}. The scheme defines the space of plaintexts

as the set [N] and the space of ciphertexts as the set [M],
M >> N . The core idea behind the scheme is to consider a
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function f:[N]J>[M] such that

f(x)>f(y) if x>y. The scheme is symmetric with a

key size of 32 bytes. Every encryption key defines a unique
function f . To encrypt a plaintext message n e[N] the

vx,ye[N],

function f is applied, obtaining the ciphertext c¢= f (n).

Let g:Imf(f)—>[N] be the function that maps each

element from the image of the function f to its
corresponding element from the preimage, Vne[N],

g(f(n))=n. Since [N] is the sets of the plaintexts, the
preimage of the function f is the set [N] itself. To decrypt
the ciphertext ceImf (f), the function g is applied,

obtaining the plaintext n=g(c). One thing to note is that

the decryption operation is not defined for all elements in
the set [M ] but only for those belonging to the image of f .

In this paper, we use a modified version of the Boldyreva
scheme. The original scheme has two major drawbacks: it is
deterministic and therefore suffers from an attack through
which half of the plaintext bits can be recovered only from
the cyphertext [8]. We address these two problems by
slightly modifying the original scheme.

The deterministic nature of the original scheme is a
serious problem if the attacker knows the range of
plaintexts. Suppose for example that the user encrypts a
grayscale image. Each plaintext is an integer in the range

[O, 255] . Since the scheme is order-preserving the attacker
can deduce that the smallest ciphertext corresponds to a
plaintext value of 0, the next smallest ciphertext corresponds
to a plaintext value of 1, etc. In the case of image
encryption, given the deterministic nature of the scheme, the
ciphertextof a certain pixel will appear several times in the
encrypted image. The fact that the attacker decrypts a single
ciphertext implies that he will know several plaintext values
from the encrypted image. If the scheme would be
randomized, multiple encryptions of the same plaintext
would result in multiple independent ciphertexts.

In this section, we proposed a simple modification of the

scheme to improve its security. Let (GenB, EncB, DecB) be

the key generation, encryption and decryption algorithms
defined in the original version of the scheme.

The key generation algorithm, GenB, is modified to
return two keys: k; and k,. The key k; is the output of
GenB , where the second key k, is a 32 bytes randomly

generated integer. We denoted the modified version of
GenB as Gen.

The modified encryption algorithm denoted by Enc
receives as input an integer m and the keys k; and k,. To

encrypt the plaintext message meZ, Enc generates a
random integer, r, in the range [0,k, —1]. The ciphertext

outputted by Ency, «, is the encryption of m=k, +r using

EncB and the key k; as in (1):

Ency, k, = ENcBy (m*ky +r) 1)
The modified decryption algorithm denoted by Dec

66 Digital Object Identifier 10.32754/JMT.2020.2.10

Vol. 3, No. 2, Dec. 2020

receives as input a ciphertext ¢ € Z and the keys k; and k, .
The ciphertext ¢ is decrypted using DecB and the key k.
The value obtained is scaled down by a factor of k, as in

(2):
oo, | 2t

Intuitively, each plaintext m is represented by a random
integer chosen from the range [k, *m, 2%k, *m—1]. In this

way, the scheme is randomized without losing the classic
order relations (<,=,>) over the R). Given a ciphertext c, an
attacker will now recover half of the bits of m=k, +r but

since r is randomly chosen at each encryption, it will be
harder for the attacker to recover bits of m.

The idea behind our proposed modification is somewhat
similar to that of LWE (Learning with Errors) encryption
schemes: before encryption, we add a random error to the
plaintext, large enough to increase the security of the
original scheme but sufficiently small not to break the order
relations between the ciphertexts [15].

To see how the security of the scheme is improved by our
modification considered the following example. Suppose
that the attacker knows that the plaintext space consists of
two messages: mg and my, mg<m. The attacker

O]

intercepts two ciphertexts: ¢y and ¢, ¢y <¢. Since the

original scheme is deterministic and order-preserving the
attacker can easily deduce that c; is the encryption of my

and c¢; is the encryption of my. In our modified version,
instead of directly encryptingm;, we encrypt a random
integer in the range [ky*m;, 2%k, *m; —1] thus even if
Cop <C;, they can represent the encryption of the same
plaintext. The attacker can no longer deduce that c; is the
encryption of my and ¢, is the encryption of m.

I1l. CLUSTERING ALGORITHMS

Clustering algorithms are unsupervised machine learning
algorithms that indicate the geometric structure of a set of
points. In this paper, we consider two well-known clustering
algorithms: K-Means and DBSCAN. Although each
algorithm has its own specific input data, both of them

receive as input a finite set of points X ={x,%, ....xy}cR".

The general purpose of a clustering algorithm is to group the
points from the input set into clusters. Let k be the
number of clusters (in the case of K-Means this number is
given as an input to the algorithm and in the case of
DBSCAN the number if determined by the algorithm).

Both algorithms output a set of labels L={,l,...,Iy} =N",
1<1; £kV1<i<N indicating the cluster to which each
point belongs, the point x; € X belonging to the cluster
lj eL. In addition to the set of labels L, K-Means also

returns a set of centroids, C={c;,C,,....c,JcR". Let
S :{xj I =i}, 1<i<k < j<N, be the set of all points that

belong to cluster i. The centroid c; represent the arithmetic
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mean of all points from the cluster i and is calculated in (3).
The centroids can be further used in an algorithm like KNN

1
=) Dx 3)
Xj€S;

In this paper, we propose a new strategy that allows
running either of the two algorithms in the cloud without
compromising the privacy of the input X. We are not
concerned with the confidentiality of the other inputs
parameters which the algorithms have. Our strategy involves
encrypting every point of the input set and send that
encrypted set into the cloud where the clustering algorithm
will receive it as input. We prove by a series of experiments
that the set of labels output by the algorithm run over the
encrypted set are as good as those output by the algorithm
run over the plain data.

In the case of k-means, we prove experimentally that
decrypting the centroids resulted from encrypted data is
geometrically close (i.e. using a well-known metric) to the
centroids determined by the algorithm over the plain data.
The encryption scheme used in all experiments is the one
presented in Section I1.

Let (pl, P2...., Py ) the coordinates of a point pe X . By
definition, encrypting the point p involves encrypting each

coordinate. Since the encryption function of a point is not
defined in the scheme, we define the encryption of a point

pe X of coordinates (pg, Py.....Py), Pj €Z under the
keys k; and k, generated with Gen as in (4).

Ench i, (p)=

(4)
= (Enckbk2 (PL),Enci k, (P2)s--- ENCy i, (pn))
Similarly, the decryption of point is defined in (5).

DecR «, (P) =
()

= (Deck1,k2 (P1). Decy k, (P2).--. Decy x, (pn))
K-Means is one of the best-known clustering algorithms.

There are many variants of the algorithm but the one used in
this paper is the naive K-Means [9-12]. The input of the

algorithm consists of a finite set X ={x,%, ...,y | c R"

of N points and a natural number k >0 representing the
number of clusters to be formed. The algorithm outputs the
coordinates of k centroids and assigns a label to each point
in the set X that represents the cluster to which the point
belongs. The procedure is iterative and consists of two main

steps. Let C(t)z ol(t),cz(t),...,ck(t)}, L(t)={'1(t),|z(t)w-:|N(t)}’

1< Ii(t) <kV1<i<N be the sets of centroids and labels at
iteration t.

The first step of the algorithm is the assignment. In this
step, for each point x; € X, 1<i< N, the distance from all
centroids is computed and the label is updated to include the
point in the cluster of the nearest centroid. Let dj,
1<i<N1< j<k, be the distance between the point x; and

centroid cj(t_l). The label of x; at iteration t, Ii(t) is

computed such that d”'(t) < dij Vi< j<k.
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The second step of the algorithm is the update. In this
step, the set C(t) is updated according to the set of labels

LY calculated in the first step. Let S(t)i ={xj |Ij(t) :i},
1<i<kl< j<N, the set of all points that belong to

cluster i. Each centroid ci(tfl),ls i <k is updated according

to (6)
D (6)

NOIE!
XjeS(t)i

b ‘S(t)i

For the first step, the set of centroids, C(O), is chosen
randomly from the set R". The algorithm converges and
stops when C(t) = C(H) .

Let Xqn be the set of encrypted points in X. Since we
apply the algorithm over the encrypted data the resulting
centroids will be calculated over the ciphertexts space. For
the decryption operation to be defined, the encrypted
centroids must belong to the set of valid ciphertexts. To
solve this problem, we propose a slight modification on the
update step of the K-Means algorithm.

In the original version of the algorithm, the centroid ci(t)
is updated as the arithmetic means of all points that belong
to cluster i. After this computation over cyphertexts, the
updated centroid ci(t) could be an invalid ciphertext (i.e. a
ciphertext for which the decryption is not defined).

Our solution to this problem is to approximate the
updated centroid ci(t) to the nearest point in the set X .

Since the entire set of points, Xg,, is composed of valid
ciphertexts, it is certain that the updated centroid ci(t) will

also be a valid ciphertext. So, to update the ci(tfl) centroid,

the arithmetic mean value of all points that belong to cluster
i is calculated and then it is approximated to the nearest
point in the set Xg,c . If p is the arithmetic mean obtained

by (6) and dj, 1<j<N, the distance between the point p

and enc(xj), then the updated the centroid ci(t) will be

calculated as enc(x,) such that d, <d;vi<j<N,

1<u<N.

DBSCAN is another well-known clustering algorithm
[13]. Unlike K-Means, DBSCAN does not require the
number of clusters to be known and does not return a set of
centroids. It is also able to find noise points i.e. points that
do not belong to any other cluster. There are several
differences between K-Means and DBSCAN:

1. DBSCAN works on non-globular data.

2. DBSCAN produces clusters according to the density of
points.

3. K-Means is optimized according to least-squares while
DBSCAN search density-connected regions of points.

There are three inputs to the algorithm. The first input is a
finite set X :{xl,xz,...,xN}cR” of points that will be
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clustered. The second input is a real number ¢eR that
specifies the radius of a neighbourhood of a point from
the set X. The last parameter is a natural number M eN
that defined the minimum number of points needed in a
neighbourhood such that it can be considered as a cluster.
The output of the algorithm is the set of labels

L= {Il, PR } assigned to each point.
For each point pe X we define the neighbourhood of
pq =

represents the Euclidean distance between the points
p and g. A point pe X is called a core point if the set

V,(p) contains at least M points i.e. |\/'g ( p)| <M . A point

ge X is a directly reachable point from a core point p if
dpq <&. The definition of a directly reachable point is

the point p as the set V. (p) = {q eX|dyy < g} where d

similar to the definition of a neighbourhood. The difference
between the two is that the set V, (p) is defined for every
point p e X while a directly reachable point is defined only
from a core point.

DBSCAN maintains an internal variable C which initially
is 0 and is incremented each time a new cluster is found. At
each iteration, the algorithm identifies the first point,
X; € X that does not have a label assigned to it. If the set
Ve (x;) has more than M elements (i.e. |V, ()[=M ) then

a new cluster has been found and the variable C is
incremented, the point x; receiving the label C, I; =C. If

the neighborhood of the point x; does not contain more than

M elements, then the point is considered a noise point. For
each other point x; € X, j=i, if the point x; is noise or

does not have a label, if ’Vg(xj)‘z M then the point Xx;

also receive the label C.

IV. EVALUATION METRICS OF CLUSTERING ALGORITHMS
Let X :{xl,xz ...,xN}c]R” be the input data in plain

form and Xegng = {encP(x),encP(xy),...,encP(xy )} <C
be the encrypted input data. Both algorithms analyzed in this
paper return a set of labels. Let L={l,l,,...,Iy}cN"

be the set of labels returned by the algorithm over
the  plain data, X. Similarly, we  define

Lenc ={Ienc_l,Ienc_z,...,lenC_N } — N" as the set of labels

returned by the algorithm over the encrypted input Xqn.. TO
evaluate the performance of the clustering algorithm over
the encrypted data we will use the Adjusted Rand index or
ARI [16].

ARl is an evaluation metric used for
algorithms when the real clustering

C={c,Cp,....cnJ=N", 1<¢; <mVI<i< N be the set of

clustering
is known. Let

labels known to be truth. Let K ={kyky,....ky}=N",
1<k £ny,V1<i< N be the set of labels returned by the
clustering algorithm. Here ny and n, are the ground truth
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number of clusters respectively the number of clusters found
by the algorithm. Let x be the number of pairs of points

(i,j),1<i,j<N,i# | that have the same label both in the
set C and in the set Ki.e. ¢; =c; and kj =k;. Lety be the

number of pairs of points (i, j):1<i,j<N,i# | that have
different labels in the set C and different labels in the set K
i.e. ¢ #cj and k; # k. The ARI index is calculated in (7):

arl - RIZE[RI]
~ max(RI)-E[RI]’

where E[X] is the expected value of the random variable X
and RI is calculated in (8):
X+

= o

ARI values are bounded in the interval [-1,1]. A uniform

random assignment of labels by the algorithm will result in an
ARI value of 0. An ARI value of -1 indicates independent
clustering i.e. the set C and K are not correlated with each
other. An ARI value of 1 indicates the two clustering are
identical i.e. any pair of points that are part of the same cluster
according to the real clustering will be part of the same cluster
according to the clustering given by the algorithm.

Given the fact that K-Means returns a set of centroids in
addition to the set of labels, we have to define an evaluation
metric to compare the centroids given by K-Means over the
plain data with those given by the algorithm over the
encrypted data.

Let C ={C1,C2...Cnl}cR” be the set of centroids

()

RI

(®)

known to be true (i.e. obtained on plain data clustering) and
Ck :{Cl,CZ...an}c R" be the set of centroids returned

by K-Means. Intuitively, to analyze the performance of the
algorithm we must compute some kind of distance between
the sets C; and C, . Since we are working in a Euclidean
space which is a metric space, we can use the Hausdorff
distance.

Let d(x,y) be the Euclidean distance between the points

x,y e R". The Hausdorff distance between two finite

subsets X and Y of R", dy; (X,Y) is defined in (9)

dy (X,Y)= max(maxmind(x, y),maxmind (X, y)j 9)
xeX yeY yeY xeX

If the two set of centroids, C; and Cj are identical then
dy (Ct.Ck)=0.

V. THE EXPERIMENTS

In the first experiment we study how the proposed
modification of the original K-Means algorithm impacts its
performance, using the two metrics presented in the
previous section. We consider different sets of points and
for each set we calculate the labels and the centroids given
by the original algorithm and those returned by the modified
version. We then use the ARI metric to compare the two sets
of labels and Hausdorff distance to compare the two sets of
centroids.
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In this experiment we generate 100 sets of points denoted
as Xq, Xp,..., X199 The set X;,1<i<100 is partition into
i#10 clusters. Each set has a total of 5000 points. The
coordinates of each centroid are randomly generated in the

interval [—28,28} . The standard deviation of each cluster is

set to 5. To generate the clusters, we used the function
make_blobs from the scikit-learn library [14].

In Figure 1 we plot how the Hausdorff distance changes
according to the number of clusters. Similarly, in Fig. 2 we
show how ARI changes as the number of clusters increases.
From Figure 1 it can be seen that the Hausdorff distance
increases as the number of clusters increases. This means
that the centroids resulted from the modified version of
k-means tend to distance from the centroids determined by
the original version of k-means. Since all the points have

coordinates in the range [—28,28] the biggest distance

between two points is /524288 ~ 724 . In our experiment,
the Hausdorff distance is a maximum 20 which is about
2.7% of the biggest distance.

The ARI, plotted in Fig. 2, decreases as the number of
clusters increases. This means that the labels assigned by the
modified version of k-means tends to behave more like
uniform randomly assigned labels.

Experiment 1: Hausdorff distance

20.0
17.5
. . o, =
15.0 | . .o A
. s % L] “e @ .. *e
12.5

10.0 4

Hausdorff distance

7.5 1

5.0

2.5

T T T T T T
0 200 400 600 800 1000
Number of clusters

Figure 1. Hausdorff distance between the two groups of points

Experiment 1: ARI

1.00 1

0.95 4§

0.90 4

0.85 4

ARI

0.80 4
0.75 4

0.70 | D UL P
. . - .' .

T T T T T T
0 200 400 600 800 1000
Number of clusters

Figure 2. ARI between the two sets of labels

Overall, it can be concluded that the efficiency of the
modified k-means decreases compared to that of the original
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version. However, in the previous experiment, the standard
deviation of a cluster is a constant value of 5. Intuitively, the
results of the first experiment can be explained by the fact
that as the number of clusters increases, because the
standard deviation is constant, the distance between the
clusters becomes small thus the clusters can no longer be
differentiated. A visual example of this is given in Fig. 3
where the whole set of 5000 points was grouped into
500 clusters each with a standard deviation of 5 was plotted.

To compensate for this situation, we choose to adapt the
standard deviation according to the number of clusters.
If N is the number of clusters then the standard deviation of
each cluster, oy is calculated in (10):

1

0.02xN

The motivation behind (10) is to decrease the standard
deviation of each cluster as the number of clusters increases.
In this way, the space between clusters will increase with
their number. Fig. 4 shows the clustering of 5000 points
into 500 clusters but his time the standard deviation was
adjusted according to (10).

ON = (10)

Simple plot

200 z"';*‘{'#-\' 'lt'_'

100 4

—100 1

—200 1

Figure 3. 500 clusters with a standard deviation of 5

Simple plot

Ld
L]
2004 * o o o ., e® o

.
100 + .
L]

—100 4

—200 A

Figure 4. 500 clusters with a standard deviation of 0.1

To study the impact that standard deviation adjustment
has on Hausdorff distance and ARI, the first experiment was
repeated under the same conditions, only this time the
standard deviation was updated according to (10). Fig. 5 and
Fig. 6 show the new values for the Hausdorff distance and
ARI. From the plots displayed in the Fig. 5 and Fig. 6, it can

69



Journal of Military Technology

be observed that both the Hausdorff distance and ARI keep
their values almost constant. This time, the Hausdorff
distance is 0.2% from the biggest distance between two
points. This means that the centroids resulted from the
modified k-means are very closed to those returned by the
original version. The value of ARI is very close to 1 which
shows that the clustering made by the modified algorithm is
almost identical to that made by the original algorithm.

We can conclude that as long as the clusters are separable,
our modification does not impact the performance of the
algorithm. When the clusters are not separable it is known
the k-means is not a suitable choice for clustering.

We can conclude that our modification does not impact
the performance of the algorithm provided that the input set
can be clustered using k-means (i.e. the input data is
geometrically separable).

Experiment 1: Hausdorff distance (cluster standard deviation adjusted)

2.84

2.6

N N
) =
L L

Hausdorff distance
Il
=1
!

1.8

1.6

1.4 oeee omomee o

T T T T T T
] 200 400 600 800 1000
Number of clusters

Figure 5. Hausdorff distance after cluster standard deviation was updated

Experiment 1: ARI (cluster standard deviation adjusted)

1.005
1.000 - wsmeme  cerew o Soaiien o R i i T
0.995 ~

0.990 4

ARI

0.985 4

0.980 4

0.975 1

0.970 -

T T T T T T
0 200 400 600 800 1000
Number of clusters

Figure 6. ARI after cluster standard deviation was updated

Our second experiment studies the performance of
k-means over the encrypted data. As we have specified in
Section 111, to be able to run k-mean over the encrypted data
we must use our modified version of the algorithm. In the
second experiment we will study the impact of data
encryption with respect to clustering performance. For
simplicity, we called the modified version of k-means
mk-means. We will study the ARI between the labels
returned by the mk-means over the plain set of points and
labels returned by mk-means over the encrypted set of
points. The centroids returned by the mk-means over the
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encrypted set of points are decrypted and then the Hausdorff
distance between the decrypted centroids and the centroids
returned by mk-means over the plain set is calculated.

As in the previous experiment, 100 sets of points
were generated: Xq, X,,..., X190 . Each set, X;, 1<i<100
contains 1000 points partitioned into i cluster. The standard
deviation of each set was calculated according to (10).
Fig. 7 and Fig. 8 show the Hausdorff distance and ARI,
respectively.

Experiment 2: Hausdorff distance

3.0 1

~N
[
L

Hausdorff distance
S
o
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101 L

6 Zb 4ID 6|0 Bb 160
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Figure 7. Hausdorff distance

Experiment 2: ARI
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Figure 8. ARI index

The Hausdorff distance between the decrypted centroids
calculated using mk-means over the encrypted data and the
centroids resulted from the same algorithm over the plain
data is about 0.2% from the biggest distance that can be
defined in this experiment.

The ARI between the labels of the encrypted data and the
labels of the plain data is almost 1 which means that the
clusters generated by mk-means over the encrypted data are
almost identical to those generated over the plain data.

Although k-means is an efficient algorithm, there are
cases in which the configuration of the points is not globular
thus k-means will not produce the expected clustering. In
those cases, DBSCAN is a much more appropriate
algorithm. Fig. 9 shows an example of clustering using
k-means and DBSCAN. There are 1000 grouped into
4 clusters. To generate the points, a linear transformation
with randomly generated values from a normal distribution
was applied to the output of make blobs function. In this

case, the clustering produced by DBSCAN is more relevant
than the one produced by k-means.
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Figure 9. K-Means and DBSCAN vs on non-globular clusters

Another example when DBSCAN produces better results
than k-means is shown in Fig. 10. This time the points were
generated using make _circle function from sklearn library.
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Figure 10. K-Means and DBSCAN vs on circular clusters

In our third experiment we study the performance of
DBSCAN over the encrypted data. In this experiment, we
generate 100 sets of points: Xq, X,,..., X199 €ach set X;

containing 1000 points. To create non-globular clusters, a
2x2 linear transformation with random values from a
normal distribution was applied to each point. Each set was
encrypted and then DBSCAN was applied over the plain set
and the encrypted set. The ARI between the two sets of
labels was calculated and plotted in Fig. 11.

Experiment 3: ARI
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Figure 11. ARI index

The ARI is almost 1 regardless of the number of clusters
which means that the algorithm can be applied over the
encrypted data and will produce the same clustering as if
applied over the plain data. In addition to the clustering
itself, this experiment also studied the number of clusters

Digital Object Identifier 10.32754/JMT.2020.2.10

Vol. 3, No. 2, Dec. 2020

produced by the algorithm. Although each set X; was
generated to contain i clusters, DBSCAN can produce a
different number. Fig. 12 shows the relation between the
number of clusters initially generated and the number of
clusters produced by DBSCAN.

Experiment 3: Number of DBSCAN clusters
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Figure 12. The number of clusters produced by DBSCAN

This experiment shows that the relation between the two
number of clusters is almost linear with a few exceptions
when DBSCAN produced a very different number of
clusters than the original one.

VI. COLOUR REDUCTION OVER ENCRYPTED IMAGES

The colour reduction is a technique that reduces the
number of colours in an image while maintaining much of
the information of it. In this section we present an
experiment that studies colour reduction on encrypted
images as a direct application of our modified version of k-
means. Let | be an nxm RGB image. If each pixel has a
unique colour, then we need nxmx3 bytes of memory to
store the image I. Colour reduction allows the representation
of the same image | with a small number of colours
k <« nxmx3 without affecting its semantic meaning.

Let X be the set of all colours that appear in the image I.
Since colour is a triplet of natural numbers, we can view

X ={Xg, Xp,..., X} asasetof points from N3, X = N8,
Colour reduction starts by applying the k-means
algorithm over the set X. Let C={C;,C;,...,Cc}, k<n

and L={Ly,L,,...,L,} be the sets of centroids respectively

labels returned by k-means. The next step of the algorithm
consists of replacing each point from the set X with its
centroids: the point X; is replaced by the point

C,. Vi, 1<i<n.The number of colours is reduced from n,

the original number of colours of the image to k, the number
of centroids.

To maintain the confidentiality of the image, it will be
encrypted using the scheme presented in Section Il. As
shown in Section V, our modified version of k-means
performed well over encrypted data both from the
perspective of ARI and from the perspective of Hausdorff
distance. Since colour reduction is simply a call to k-means,
we can reduce the number of colours directly from the
encrypted image by applying our modified version of the
algorithm, mk-means.

71



Journal of Military Technology

In the fourth experiment we evaluate the performance of
colour reduction over encrypted images by applying the
algorithm to both the original and the encrypted image. We
compare the decrypted image with the original using PSNR,
a metric that calculates how different two images are.

For this experiment we use the TensorFlow Flower
Dataset. The dataset contains a total 3669 colour images
from which 100 were randomly selected. Each selected
image was resized to 32x32 pixels and the number of
colours was reduced to 64.

The experiment shows that the average of the 100 PSNR
values is 34.27 with a standard deviation of 3.66.

To better illustrate the performance of our algorithm,
Table | shows the results for five concrete images from
TensorFlow Flower Dataset. The images were resized to
128x128. For each image the number of colours was
reduced to 64.

TABLE |. THE PSNR OBTAINED FOR FIVE IMAGES

Name of the image PSNR
4914793782 _d0ea760791.jpg 34.05
5840476802_dfa40deblf m.jpg 36.79
3697780051 83e50a6dd1_m.jpg 40.78
15381511376_fd743b7330_n.jpg 39.28
14335561523 f847f2f4f1.jpg 34.69

VII. CONCLUSIONS AND FURTHER DIRECTION OF RESEARCH

In this paper, we showed by a series of experiments that
order-preserving encryption can be applied to solve the
problem of data confidentially when they represent input for
a clustering algorithm. In the first part, we show how the
Boldyreva encryption scheme can be randomized to obtain a
better security level. We then propose a slight modification
of the k-means algorithm to be able to run over the
encrypted data generated by our scheme.

The first experiment showed that modification made to
the original K-Means algorithm very slightly affects its
performance. The second experiment showed that the results
of our K-Means proposal over the encrypted data are as
good as those obtained applying the same clustering method
over the plain data.

The third experiment proved that the DBSCAN
performance over the encrypted data is as good as that
obtained by the same algorithm over the plain data. Our
fourth experiment presented a practical application of
k-means over the encrypted data, namely colour reduction of
an encrypted image.

Overall, from an experimental point of view, we can
conclude that order-preserving encryption is a suitable
solution to the problem of input privacy of the clustering
algorithm. A further direction of research is to perform more
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experiments using other encryption schemes of this type.
Another direction of research is the formal study of the
applicability of this type of encryption scheme together with
unsupervised machine learning algorithms.
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