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Abstract

Key agreement protocols based on neural synchronization with Tree Parity Machines
(TPMs) offer promising security advantages: they do not rely on trapdoor functions, mak-
ing them resistant to quantum attacks, and they avoid the need for specialized hardware
required by quantum-based schemes. Nevertheless, these protocols face a significant vul-
nerability: the large number of public message exchanges required for synchronization
increases the risk that an attacker, acting as a Man-in-the-Middle, can successfully synchro-
nize their own TPMs with those of the legitimate parties and ultimately recover the shared
key. Motivated by the need to reduce this risk, we propose a novel probabilistic protocol
that enables two parties to securely estimate the size of the shared key during intermediate
steps, without revealing any key material. This estimation allows the protocol to terminate
as soon as sufficient key material has been established, thereby reducing the number of
synchronization rounds and limiting the opportunity for an attacker to synchronize. We
integrate our estimation mechanism into a neural key agreement protocol and evaluate its
performance and security, demonstrating improved efficiency and enhanced resistance to
attacks compared to existing approaches.

Keywords: neural cryptography; key agreement; tree parity machine; cryptography

1. Introduction
Key agreement protocols are fundamental to the security of modern cryptographic

systems. From securing web traffic via the TLS protocol to enabling end-to-end encrypted
messaging platforms such as Signal, the majority of cryptographic applications depend
on robust key agreement mechanisms [1]. The primary objective of these protocols is to
establish a shared secret between two or more parties over potentially insecure communi-
cation channels.

Traditionally, most key agreement protocols rely on hard number-theoretic problems,
including the discrete logarithm problem (DLP), the Diffie–Hellman problem (DHP), the
decisional Diffie–Hellman problem (D-DHP), and the integer factorization problem [2].
A significant drawback of these approaches is their susceptibility to attacks by large-scale
quantum computers. Shor’s seminal work [3] introduced a quantum algorithm capable of
solving both the DLP and the factorization problem in polynomial time. Although quantum
computers of sufficient scale do not yet exist to threaten widely deployed cryptographic
protocols, it is widely anticipated that such technology will emerge in the foreseeable
future [4].
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In response to these challenges, three principal alternatives to conventional key agree-
ment protocols have been developed:

1. Post-quantum key agreement protocols,
2. Quantum key agreement protocols,
3. Neural key agreement protocols.

Post-quantum key agreement protocols are based on mathematical problems for which
no efficient solution is known on either classical or quantum computers [5]. However, these
schemes often involve computationally intensive operations over finite fields, which can
hinder their practical deployment [6]. Quantum key agreement protocols, on the other
hand, leverage quantum phenomena such as wave function collapse, entanglement, and
the no-cloning theorem [7]. While these protocols provide strong security guarantees even
against quantum adversaries, they require specialized hardware that is both costly and
challenging to maintain.

Neural key agreement protocols, first introduced in [8], offer an alternative to both
quantum and post-quantum approaches. The core concept involves synchronizing the
weights of two neural networks, specifically Tree Parity Machines (TPMs), through iterative
updates between the communicating parties. The resulting synchronized weights are then
used as a shared secret key. Unlike post-quantum protocols, whose security is predicated
on mathematical problems that may eventually be solved, or quantum protocols, which
necessitate dedicated and expensive hardware, neural key agreement protocols do not rely
on such assumptions or infrastructure.

A central challenge in neural key agreement protocols is the large number of rounds
typically required for two parties to achieve full synchronization of their TPMs. In existing
protocols, the process continues until the entire set of weights is identical, at which point
the shared key is established. However, this approach leads to a substantial communication
overhead and, more critically, increases the risk that an adversary can synchronize their
own TPM with those of the legitimate parties by observing the public exchanges [9]. This
vulnerability is exacerbated as the number of rounds grows, since each additional round
provides further opportunities for an attacker to align their weights.

It is important to note that the weight vector of a TPM generally contains far more
elements than the length required for a standard cryptographic key (e.g., 128 bits). This
observation suggests that it is not necessary to wait for complete synchronization; the
protocol could be terminated once a sufficient number of weights have been aligned to
provide the desired level of security. Early termination would not only reduce the number
of communication rounds—thereby improving efficiency—but also significantly limit the
window in which an attacker might succeed in synchronizing their own TPM.

The main obstacle to implementing early termination is the lack of a secure mech-
anism for the parties to determine the extent of synchronization without revealing any
information about the actual weights. Without such a mechanism, the parties cannot safely
assess whether enough key material has been established to halt the protocol. To address
this limitation, we introduce a privacy-preserving comparison protocol that enables the
two parties to securely estimate the number of synchronized weights after each round,
without disclosing the weight values themselves. By integrating this mechanism into the
neural key agreement protocol, we enable secure early termination based on the amount of
shared key material, thereby enhancing both the efficiency and the security of the protocol.

1.1. Related Work

The concept of employing neural synchronization for key agreement protocols was first
introduced by Kanter et al. [8], who proposed a method enabling two parties to synchronize
the weights of their respective three-layer neural networks, known as Tree Parity Machines
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(TPMs), over a public channel. This approach was designed to prevent any third party from
reconstructing the weights, even with access to all exchanged information. Shortly there-
after, Klimov et al. [9] identified three classes of attacks against this protocol, demonstrating
through extensive experimentation that a geometric attack could allow an adversary to
recover up to 90% of the shared key. In response to these vulnerabilities, Mislovaty et al. [10]
provided experimental evidence that increasing the range of possible weight values can
enhance the protocol’s security. Nevertheless, Shacham et al. [11] subsequently introduced
a more advanced attack that remains effective even when the weight range is expanded,
underscoring the persistent challenges in securing neural synchronization-based protocols.

To further strengthen the security of neural key agreement protocols, a variety of
alternative strategies have been explored [12]. For instance, Ruttor et al. [13] proposed
dynamically generating TPM inputs based on the current internal state of the network,
thereby increasing the unpredictability of the synchronization process. In a different
approach, Allam et al. [14,15] developed algorithms that perturb the TPM output, making
it more difficult for adversaries to reconstruct the original information while still enabling
legitimate parties to achieve synchronization. Although these methods enhance security
under the assumption that an eavesdropper can intercept all public communications, they
often result in increased synchronization times.

Recent research has also focused on novel TPM architectures and input representations.
Stypinski et al. [16] introduced nonbinary input values to accelerate protocol execution,
while Jeong et al. [17] demonstrated that vector-valued inputs can further improve both
efficiency and security. Similarly, Dong et al. [18] investigated the use of complex-valued
inputs in TPMs. The security implications of nonbinary inputs were systematically analyzed
by Stypinski et al. [19], providing deeper insights into the robustness of these protocols. In
addition to architectural innovations, parameter selection for TPMs has been systematically
studied by Salguero et al. [20], who analyzed various parameter sets and reported their
effects on both synchronization time and security.

Beyond theoretical advancements, several studies have examined practical applica-
tions of neural cryptography. For example, Sarkar et al. [21] utilized TPM-based mecha-
nisms to enable secure access to medical data, while Sarkar et al. [22] developed a chaos-
based neural synchronization method for secret sharing within a public-key framework.
Gupta et al. [23] applied neural cryptography to the secure distribution of image shares.
Additionally, Plesa et al. [24] proposed a TPM architecture based on spiking neural net-
works, evaluating its performance and resilience to man-in-the-middle attacks. Notably, the
efficiency gains of this protocol are most pronounced when implemented on neuromorphic
hardware [25].

Table 1 provides a comparison of the main TPM-based key agreement protocols,
highlighting their core ideas, advantages, and limitations relative to our proposal.

Table 1. Comparison of TPM-based key agreement protocols.

Protocol Core Idea/Modification Advantages Limitations/Comparison
to Our Protocol

Kanter et al. [8]
Original TPM

synchronization protocol
over public channel

Simple, does not rely on
trapdoor functions

Vulnerable to geometric
attacks; no early

termination mechanism

Mislovaty et al. [10] Increased weight range to
improve security

Reduces success rate of
some attacks

Still vulnerable to
advanced attacks; no

protocol-level fix
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Table 1. Cont.

Protocol Core Idea/Modification Advantages Limitations/Comparison
to Our Protocol

Ruttor et al. [13] Dynamic input generation
based on internal state

Increases unpredictability,
improves security

Increases synchronization
time; more complex

implementation

Allam et al. [14,15] Output perturbation to
confuse adversaries

Harder for attacker to
reconstruct weights

Slower synchronization;
more rounds required

Stypiński et al. [16] Nonbinary input vectors
for TPMs

Faster synchronization,
improved efficiency

Security depends on
parameters; geometric

attacks still possible

Jeong et al. [17] Vector-valued inputs
for TPMs

Improves efficiency
and security

Implementation
complexity; not immune to

all attacks

Dong et al. [18] Complex-valued TPMs
Novel input representation;

potential for
higher security

Security analysis limited;
practical deployment

unclear

Salguero et al. [20] Parameter optimization
for TPMs

Systematic study of
security vs. efficiency

trade-offs

Does not address
protocol-level
vulnerabilities

Plesa et al. [24] Spiking neural
network TPMs

Improved efficiency on
neuromorphic hardware

Security against geometric
attacks not fully resolved

Our Protocol
Privacy-preserving

synchronization check with
early termination

Significantly reduces
rounds; effectively

mitigates geometric attacks

Readily integrates with
existing TPM frameworks;
offers promising potential
for practical deployment

1.2. Our Contribution

The primary contributions of this study are summarized as follows:

1. We introduce a novel probabilistic algorithm that allows two parties engaged in
a neural key agreement protocol to privately compute the proportion of synchronized
weights at intermediate stages, without revealing the actual weight values.

2. Leveraging this algorithm, we develop a new key agreement protocol based on the
non-binary TPM model proposed by [16].

3. We perform a comprehensive security analysis of our protocol, evaluating its resilience
against both naive and geometric attacks, and benchmark its robustness against the
protocol presented in [16].

4. We empirically demonstrate the efficiency of our protocol by analyzing its complexity
in terms of the number of rounds required for synchronization, as a function of the
number of hidden units in the TPM and the weight range, and compare these results
with those of [16].

The remainder of the paper is organized as follows. Section 2 introduces the Tree Parity
Machine (TPM) model, providing the necessary background as described in [16]. Our main
technical contributions begin in Section 3, where we present our novel algorithm for privacy-
preserving weight comparison. Section 4 builds on this by detailing our proposed neural
key agreement protocol, which integrates the privacy-preserving mechanism. In Section 5,
we provide a comprehensive experimental evaluation of our protocol, analyzing both its
security and efficiency compared to existing approaches. Finally, Section 6 concludes the
paper and discusses directions for future research.
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2. Tree Parity Machine
The Tree Parity Machine (TPM) model utilized in this study, as originally introduced

in [16], is a three-layer neural network consisting of an input layer, a hidden layer, and
an output layer. The input layer is partitioned into K groups, each comprising N neurons.
Each neuron within a group is connected to a corresponding neuron in the hidden layer,
and all hidden neurons are collectively connected to a single output neuron.

The network inputs, denoted by xji for 1 ≤ i ≤ N and 1 ≤ j ≤ K, are integer values
constrained by −M ≤ xji ≤ M, where M ∈ Z. The synaptic weights connecting the input
and hidden layers, represented as wji, are also integers, bounded by −L ≤ wji ≤ L, with
L ∈ Z.

The activation of each hidden neuron, yj, is computed by applying the sign function
to the weighted sum of its inputs:

yj = σ

(
N

∑
i=1

xjiwji

)
, (1)

where σ(x) denotes the sign function.
The output neuron, denoted by O, calculates the product of the activations of all

hidden neurons:

O =
K

∏
j=1

yj (2)

The weights of the network are updated according to the Hebbian learning rule, as
described in [26]:

wji ← wji + O xji Φ
(
yj, O

)
, (3)

where

• wji is the weight of the i-th input to the j-th hidden neuron,
• xji is the corresponding input value,
• yj is the output of the j-th hidden neuron,
• O is the global output of the TPM,
• Φ(a, b) is the indicator function:

Φ(a, b) =

1, if a = b,

0, otherwise.

Figure 1 illustrates the structure of the TPM.

Figure 1. The structure of a Tree Parity Machine.
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3. Weights Comparison Algorithm
Consider two parties, P1 and P2, participating in a neural key agreement protocol.

Let wP1 and wP2 denote the respective KN-dimensional weight vectors of their TPMs. The
proposed comparison protocol, PrivComp, enables the parties to privately compute not
only the number of synchronized weights, but also to identify which specific weights have
been synchronized, without revealing the actual values of the weights to any external
observer. This is achieved under the honest-but-curious security model, where both parties
are assumed to follow the protocol correctly, but an adversary may passively intercept
all messages exchanged during PrivComp in an attempt to infer the secret weights. The
protocol proceeds as follows:

Initially, P1 constructs a vector d1 by flattening its weight matrix wP1 , and generates
a decoy vector d2 of the same length, where each entry is independently sampled from the
range −L ≤ d2

i ≤ L. For each position 1 ≤ i ≤ KN, P1 randomly decides whether to swap
the values of d1

i and d2
i , thereby obscuring the correspondence between the actual weights

and the decoy elements. After performing these random swaps, P1 transmits both d1 and
d2 to P2.

Upon receiving the vectors, P2 compares each of its own weights with the correspond-
ing entries in d1 and d2. Specifically, P2 constructs a binary vector mask, where maski = 1 if
wP2

i matches either d1
i or d2

i , and maski = 0 otherwise. The Hamming weight S of the mask
vector, representing the number of matches, is then computed. If S exceeds a predefined
security threshold τ, P2 returns the mask vector to P1; otherwise, the protocol terminates
with output ⊥.

An adversary intercepting the vectors sent by P1 cannot deduce the actual weights, as
the random swapping introduces 2KN possible configurations. Although the mask vector
could potentially reduce the brute-force search space by indicating positions of possible
matches, the threshold τ ensures that an attacker must still consider at least 2τ possibilities,
thereby preserving the desired level of security.

The underlying intuition is that, due to the synchronization process, the probability
that P2 observes a match at position i without the actual weights being synchronized
is low. Consequently, if maski = 1, it is highly likely that the corresponding weights
are synchronized.

The output of the PrivComp protocol is the common set weights, or ⊥ if the number of
matches is below the threshold τ.

The following theorems establish the correctness and security of our construction.

Theorem 1 (Correctness). Let wP1 , wP2 ∈ {−L, . . . , L}KN denote the weight vectors of parties
P1 and P2. Let d1, d2 be constructed as specified in the protocol, and let mask ∈ {0, 1}KN be the
output of P2. Then, for any position i ∈ {1, . . . , KN}:
1. If wP1

i ̸= wP2
i , the probability that maski = 1 (i.e., a false positive) is at most 2

2L+1 .

2. If wP1
i = wP2

i , then maski = 1 with probability 1 (i.e., a true positive).

Proof. Fix any position i ∈ {1, . . . , KN}.
Case 1: wP1

i ̸= wP2
i (False Positive Probability).

According to the protocol, for each index i, one of {d1
i , d2

i } contains the true value wP1
i ,

while the other contains a randomly generated decoy. The assignment is governed by the
swap bit swi: if swi = 0, then d1

i = wP1
i and d2

i is a decoy; if swi = 1, then d2
i = wP1

i and d1
i

is a decoy.
Let r be the random decoy sampled uniformly from {−L, . . . , L}.
There are two cases, each occurring with probability 1/2:
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• With probability 1/2, (d1
i , d2

i ) = (wP1
i , r).

• With probability 1/2, (d1
i , d2

i ) = (r, wP1
i ).

In both cases, wP2
i can match d1

i or d2
i only if wP2

i = r (since wP1
i ̸= wP2

i by assumption).
Since r is uniformly distributed over 2L + 1 values, the probability that r = wP2

i is 1
2L+1 .

There are two opportunities (either d1
i or d2

i ), so by the union bound, the probability
that wP2

i matches either d1
i or d2

i is at most 2 · 1
2L+1 = 2

2L+1 .

Case 2: wP1
i = wP2

i (True Positive Probability).
Regardless of the value of swi, either d1

i or d2
i will be equal to wP1

i .
Therefore, wP2

i will always match at least one of d1
i or d2

i , so maski = 1 with
probability 1.

Theorem 2 (Security). Let P1 send the vectors d1, d2 ∈ {−L, . . . , L}KN to P2 as specified in the
protocol, where each position is randomly swapped. Let mask ∈ {0, 1}KN be the binary vector sent
by P2 to P1 only if the number of 1s in mask is at least τ. Then, for any eavesdropper intercepting
the communication:

1. Before mask is sent, the eavesdropper must consider all 2KN possible swap configurations to
recover the real weights of P1.

2. After mask is sent, the eavesdropper must consider at least 2τ possible swap configurations.

In both cases, the attacker faces an exponential search space in the relevant parameter.

Proof. (1) Security Before mask is Sent:
When P1 sends d1 and d2, each entry is either the real weight or a random decoy,

determined by the secret swap vector sw ∈ {0, 1}KN . For each position i, the attacker does
not know whether d1

i or d2
i is the real weight. Thus, to recover the real weight vector, the

attacker must guess the entire swap vector sw, which has 2KN possible configurations.
(2) Security After mask is Sent:
When P2 sends the mask vector mask, the attacker learns which positions i have

a match with P2’s weights. For each position i where maski = 1, the real weight of P1

could be either d1
i or d2

i . For positions where maski = 0, the attacker knows neither value
is the real weight, so these positions can be ignored in the brute-force search.

Let S be the number of bits of 1 in the mask. The attacker must guess the swap bits
for these S positions, resulting in 2S possible configurations. By protocol, S ≥ τ, so the
brute-force complexity is at least 2τ .

Conclusion: In both cases, the attacker must consider an exponential number of
possible swap configurations, either 2KN or at least 2τ , to recover the real weights. This
ensures the protocol’s security against brute-force attacks by an eavesdropper.

The protocol is described in Box 1.
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Box 1. The PrivComp protocol for privacy-preserving weight comparison.

1. Decoy Generation: P1 initializes d1 with its actual weights wP1 and generates a
decoy vector d2, where each entry is sampled uniformly from the weight range:

d1
i ← wP1

i , ∀i ∈ {1, . . . , KN} (4)

d2
i ∼ Unif{−L,−L + 1, . . . , L}, ∀i ∈ {1, . . . , KN} (5)

2. Random Swapping and Transmission: P1 generates a random binary vector sw,
where each entry is sampled uniformly from {0, 1}. For each index i, if swi = 1,
the entries d1

i and d2
i are swapped. Both vectors are then sent to P2:

swi ∼ Unif{0, 1}, ∀i ∈ {1, . . . , KN} (6)

(d1
i , d2

i )← (d2
i , d1

i ), if swi = 1 (7)

P1 −→ P2 : (d1, d2) (8)

3. Comparison: P2 compares each of its weights wP2
i with d1

i and d2
i , constructing

the mask vector:

mask[i] =

{
1, if wP2

i ∈ {d
1
i , d2

i }

0, otherwise
∀i ∈ {1, . . . , KN} (9)

4. Threshold Verification and Response: P2 computes S = ∑KN
i=1 mask[i]. If S > τ,

P2 returns the mask vector to P1:

If S > τ, P2 −→ P1 : mask (10)

5. Output: If S > τ, both parties output the set of synchronized weights:

wc = {wP1
i | mask[i] = 1} = {wP2

i | mask[i] = 1}.

Otherwise, both parties output ⊥.

4. Neural Key Agreement Protocol
In this section, we present the neural key agreement protocol, which incorporates our

privacy-preserving comparison protocol, PrivComp, to securely determine the extent of
synchronization between the parties. The protocol is detailed in Box 2. All computations, in-
cluding weight updates, are performed within the range [−L, L] with appropriate clipping.

The proposed protocol follows the general architecture of neural key agreement
schemes, as outlined in [8,16]. Its primary innovation, however, is the integration of
a privacy-preserving comparison protocol, which allows the participating parties to ter-
minate the synchronization process as soon as a sufficient number of weights have been
aligned. This enhancement not only increases the protocol’s efficiency by reducing the
number of required rounds, but also significantly improves its security. As noted in [9], the
probability that an adversary can successfully synchronize a third TPM with those of the
legitimate parties grows with the number of rounds observed. By minimizing unnecessary
rounds, the protocol effectively mitigates this risk.

Regarding correctness, it has been established in [8] that two TPMs will eventually
synchronize, as the process can be modeled as a random walk within a finite weight space.
Each party updates its weights only when the outputs of the corresponding hidden neurons
are identical. This selective update rule ensures that the weight vectors do not diverge, but
instead gradually converge towards synchronization. In essence, updates are performed
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exclusively under conditions that promote alignment, thereby guaranteeing convergence
of the protocol.

Box 2. Neural key agreement protocol with privacy-preserving synchronization check.

1. Parameter Setup and Initialization: The parties P1 and P2 agree on the protocol
parameters K, N, M, L, and independently initialize their TPM weights uniformly
at random:

wP1
ji ∼ Unif{−L, . . . , L}, ∀(j, i) ∈ {1, . . . , K} × {1, . . . , N}, (11)

wP2
ji ∼ Unif{−L, . . . , L}, ∀(j, i) ∈ {1, . . . , K} × {1, . . . , N}. (12)

2. Input Generation: Both parties agree on a common random input vector x, either
by exchanging the vector directly or by sharing a common random seed:

xji ∼ Unif{−M, . . . , M}, ∀(j, i) ∈ {1, . . . , K} × {1, . . . , N}. (13)

3. Computation and Output Exchange: Each party computes the activations of the
hidden neurons and the TPM output, then exchanges the output value with the
other party:

yP1
j = σ

(
N

∑
i=1

xjiw
P1
ji

)
, ∀j ∈ {1, . . . , K}, (14)

yP2
j = σ

(
N

∑
i=1

xjiw
P2
ji

)
, ∀j ∈ {1, . . . , K}, (15)

OP1 =
K

∏
j=1

yP1
j , (16)

OP2 =
K

∏
j=1

yP2
j , (17)

OP1 ↔ OP2 . (18)

4. Weight Update: If the outputs coincide, each party updates its weights according
to the Hebbian learning rule, but only for those hidden neurons whose activation
matches the global output:

If OP1 = OP2 = O, then (19)

wP1
ji ← wP1

ji + O xji Φ(yP1
j , O), ∀(j, i) ∈ {1, . . . , K} × {1, . . . , N}, (20)

wP2
ji ← wP2

ji + O xji Φ(yP2
j , O), ∀(j, i) ∈ {1, . . . , K} × {1, . . . , N}. (21)

5. Synchronization Check and Output: Both parties execute the PrivComp protocol
to privately estimate the number of synchronized weights. If the result is ⊥,
indicating insufficient synchronization, the protocol returns to Step 2. Otherwise,
both parties output the set of synchronized weights wc as the shared secret key.

There are two principal types of attacks on neural key agreement protocols, both of which
are relevant in the context of the honest-but-curious adversarial model. In this model, the
adversary is assumed to have full access to all messages exchanged over the public channel
and may attempt to infer secret information by passively observing the protocol, but does not
deviate from the prescribed protocol steps or actively interfere with the communication.
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In a naive attack (illustrated in Box 3, the honest-but-curious adversary attempts to
synchronize its own TPM with those of the legitimate parties by simply following the
same protocol as the participants. The success of such an attack is directly influenced
by the number of synchronization rounds observed, which highlights the importance of
minimizing protocol duration to limit the adversary’s opportunity for synchronization.

Box 3. Naive attack against the neural key agreement protocol.

1. Attacker Initialization: The adversary A independently initializes the weights of its
own TPM:

wAji ∼ Unif{−L, . . . , L}, ∀(j, i) ∈ {1, . . . , K} × {1, . . . , N}. (22)

2. Local Computation: The attacker A observes the public input vector x used by the
legitimate parties and computes the activations of its hidden neurons and the output of
its TPM:

yAj = σ

(
N

∑
i=1

xjiwAji

)
, ∀j ∈ {1, . . . , K},

OA =
K

∏
j=1

yAj .

3. Synchronization Attempt: The attacker A monitors the outputs OP1 and OP2 exchanged
between the legitimate parties. Whenever OP1 = OP2 = OA, the attacker updates its
weights according to the same Hebbian learning rule:

wAji ← wAji + OA xji Φ(yAj , OA), ∀(j, i) ∈ {1, . . . , K} × {1, . . . , N}. (23)

4. Output: The attacker A continues this process for as long as P1 and P2 execute the
protocol. Upon termination, A outputs its current weight vector wA as its estimate of the
shared secret.

In a geometric attack, the adversary leverages additional information from the protocol
execution to improve its chances of synchronization, even when its own output does not
match those of the legitimate parties. Specifically, when the attacker’s output differs, the
adversary identifies the hidden neuron whose associated weights are closest to the input
hyperplane and selectively flips its activation. This advanced technique, introduced by [9],
allows the honest-but-curious adversary to make progress toward synchronization despite
output mismatches, thereby posing a more significant threat than the naive attack. The
geometric attack is detailed in Box 4.
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Box 4. Geometric attack against the neural key agreement protocol.

1. Attacker Initialization: The adversary A independently initializes the weights of its TPM:

wAji ∼ Unif{−L, . . . , L}, ∀(j, i) ∈ {1, . . . , K} × {1, . . . , N}.

2. Local Computation: The attacker A observes the public input vector x and, for each
hidden unit j, computes:

pAj =
N

∑
i=1

xjiwAji , ∀j ∈ {1, . . . , K},

yAj = σ(pAj ), ∀j ∈ {1, . . . , K},

OA =
K

∏
j=1

yAj .

3. Geometric Update: The attacker A observes the outputs OP1 and OP2 exchanged by the
legitimate parties and proceeds as follows:

If OP1 = OP2 = O and OA ̸= O :

Let j0 = arg min
j
|pAj | (the hidden neuron closest to its hyperplane).

Define the flipped hidden vector:

ỹAj =

{
−yAj if j = j0,

yAj otherwise
∀j ∈ {1, . . . , K}.

wAji ← wAji + OA xji Φ(ỹAj , OA), ∀(j, i) ∈ {1, . . . , K} × {1, . . . , N}.

If OP1 = OP2 = O and OA = O :

wAji ← wAji + O xji Φ(yAj , O), ∀(j, i) ∈ {1, . . . , K} × {1, . . . , N}.

4. Output: The attacker A repeats the above steps for as long as P1 and P2 are executing the
protocol. When the protocol terminates, A outputs its current weight vector wA.

5. Experiments
The experimental evaluation focuses on two key aspects of the neural key agreement

protocol: efficiency and security. Efficiency is measured in terms of the number of rounds
required for synchronization, while security is assessed by the percentage of the shared
key that can be recovered by an attacker. We consider two types of attacks: naive and
geometric [9]. While naive attacks generally pose little threat to neural key agreement
protocols, geometric attacks represent a significant vulnerability and are the primary reason
such protocols are not widely regarded as secure. In each experiment, we compare our
protocol to that of [16], which follows an identical message flow, with the only difference
being that synchronization steps (1–4) from Box 2 are executed until all weights are equal.
For all experiments involving our protocol, we set the threshold τ = 128, reflecting
a realistic scenario in which an attacker would need to brute-force 2128 possible swap
configurations, as established in Theorem 2.

Efficiency: In the first set of experiments, we assess the efficiency of the protocol
with respect to K (the number of hidden neurons) and L (the range of weight values). For
both experiments, we fix N = 128 and M = 8. In the first experiment, with L = 16, we
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compute the number of rounds required to synchronize the TPMs in 50 trials for each value
of K ∈ {3, 4, . . . , 12}, and report the average. Similarly, in the second experiment, with
K = 3, we average the number of rounds over 50 trials for each value of L ∈ {16, 17, . . . , 47}.
Figures 2 and 3 present the results for the classic protocol of [16], while Figures 4 and 5
show the results for our protocol. Although both protocols exhibit similar complexity with
respect to the weight range L, our protocol demonstrates superior efficiency as K increases.
Specifically, while the protocol of [16] exhibits exponential growth in the number of rounds
with increasing K, our protocol shows an exponential decrease. This improvement is
attributable to the early termination mechanism: as K increases, the parties reach the key
length threshold more rapidly, allowing the protocol to halt sooner.

Figure 2. Number of rounds vs. K for the protocol of [16].

Figure 3. Number of rounds vs. L for the protocol of [16].
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Figure 4. Number of rounds vs. K for our protocol.

Figure 5. Number of rounds vs. L for our protocol.

To evaluate the practical efficiency of our proposed protocol, we conducted a series
of experiments comparing its average running time to that of the classic protocol of [16].
The experiments were performed on a system equipped with an Intel® Xeon® Gold 5512U
processor (12 cores per socket) manufactured by Intel Corporation, Santa Clara, CA, USA,
along with approximately 60 GB of RAM. Table 2 summarizes the average running time (in
seconds) required to achieve key agreement for both protocols, across a range of values for
the hidden layer size K.
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Table 2. Comparison of average running time (in seconds) for key agreement between the Protocol
of [16] and our protocol, for various values of K.

K Protocol of [16] Our Protocol

3 0.03 0.22
4 0.05 0.22
5 0.13 0.24
6 0.37 0.20
7 0.83 0.20
8 1.69 0.18
9 3.81 0.16

As shown in the table, while the classic protocol is slightly faster for small values of K,
our protocol demonstrates a dramatic improvement in efficiency as K increases. For exam-
ple, at K = 9, our protocol achieves key agreement in an average of just 0.16 s, compared
to 3.81 s for the protocol of [16]—a speedup of more than an order of magnitude. This
trend becomes increasingly pronounced for larger K, which is of paramount importance for
security, as higher values of K are known to significantly enhance resistance against known
attacks. These results highlight the practical advantage of our protocol in scenarios where
strong security is required.

Security: In the second set of experiments, we evaluate the resilience of both protocols
against naive and geometric attacks by measuring the proportion of the shared key that
an attacker can recover. For all security experiments, we set K = 3, a common choice in
the literature [8,16]. In our protocol, the threshold for the shared key length is set to 180,
meaning that once 180 weights are synchronized, the protocol terminates. The success of an
attack is quantified as the synchronization percentage, defined as the ratio of the number of
weights correctly recovered by the attacker to the total length of the shared key.

Table 3 presents the results for the naive attack. As expected from prior work [8,16],
neural key agreement protocols are robust against naive attacks. This robustness arises
from the synchronization process itself: while the legitimate parties update their weights
only when their output neurons agree, the attacker can update only when all three outputs
coincide. This discrepancy allows the legitimate parties to synchronize before the attacker
can recover a significant portion of the key. Notably, since our protocol halts synchroniza-
tion once sufficient key material has been established, both the average and maximum
synchronization percentages for the attacker are lower compared to the protocol of [16].

Table 3. Comparison of synchronization percentages between the two protocols for k = 3 in the
naive attack.

Protocol Average (%) Maximum (%)

Protocol of [16] 9.75 28.32
Our Protocol 6.90 27.27

The results for the geometric attack, shown in Table 4, reveal a stark contrast between
the two protocols. While the protocol of [16] yields an average attacker synchronization per-
centage of 65.02%, our protocol limits this to only 6.90%. More importantly, the maximum
synchronization percentage for the attacker reaches 100% in the classic protocol, indicating
that the attacker can occasionally recover the entire shared key. In contrast, the maximum in
our protocol is approximately 27%. Given that our shared key consists of 180 weights, even
recovering 30% of the key still leaves the attacker with more than 126 unknown weights,
corresponding to a brute-force search space of 2630 when L = 16.
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Table 4. Comparison of synchronization percentages between the two protocols for k = 3 in the
geometric attack.

Protocol Average (%) Maximum (%)

Protocol of [16] 65.02 100.00
Our Protocol 6.90 27.27

6. Conclusions and Further Directions of Research
In this paper, we introduced a novel protocol that enables two parties engaged in

a neural key agreement process to privately determine which weights have been synchro-
nized at intermediate stages. This capability allows the parties to terminate the synchroniza-
tion process as soon as sufficient key material has been established, thereby improving both
the efficiency and security of the protocol. We formally proved the correctness and security
of our approach and demonstrated how it can be seamlessly integrated into a neural key
agreement protocol.

Our experimental results show that the proposed protocol not only reduces the number
of rounds required for synchronization, but also significantly enhances security, particu-
larly against geometric attacks, the primary vulnerability in existing neural key agreement
schemes. By comparing our protocol to the state-of-the-art approach from [16], we demon-
strated substantial improvements: in our protocol, the number of rounds required for
synchronization decreases as the number of hidden units increases, whereas in the alter-
native protocol, this number grows exponentially. Furthermore, our protocol effectively
mitigates the geometric attack, limiting the attacker’s ability to recover the shared key,
while the alternative protocol remains vulnerable to complete key recovery by an adversary.

While our results are promising, we do not claim that neural key agreement pro-
tocols incorporating our privacy-preserving comparison procedure are ready for im-
mediate deployment in real-world scenarios. Rather, our work demonstrates that the
main limitation of such protocols, i.e., the vulnerability to geometric attacks, can be
addressed. An important direction for future research is to establish the security of
these protocols within a standard cryptographic framework, which remains an open
challenge for all neural key agreement protocols. The implementation is available at
https://github.com/miiip/Neural-Key-Agreement- (accessed on 26 November 2025).
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