% applied sciences

Article

Neural Key Agreement Protocol with Extended Security

Mihail-Tulian Plesa *(©, Marian Gheorghe 2

check for
updates
Academic Editors: George Drosatos,

Stefania Loredana Nita and Ion Bica

Received: 1 October 2025
Revised: 11 November 2025
Accepted: 27 November 2025
Published: 2 December 2025

Citation: Plesa, M.-I.; Gheorghe, M.;
Ipate, F. Neural Key Agreement

Protocol with Extended Security. Appl.

Sci. 2025, 15, 12746. https://doi.org/
10.3390/app152312746

Copyright: © 2025 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ /creativecommons.org/
licenses /by /4.0/).

and Florentin Ipate !

Department of Computer Science, University of Bucharest, Academiei 14, 010014 Bucharest, Romania;
florentin.ipate@unibuc.ro

School of Electrical Engineering and Computer Science, University of Bradford, Richmond Road,
Bradford BD7 1DB, UK; m.gheorghe@bradford.ac.uk

* Correspondence: mihail-iulian.plesa@s.unibuc.ro

Abstract

Key agreement protocols based on neural synchronization with Tree Parity Machines
(TPMs) offer promising security advantages: they do not rely on trapdoor functions, mak-
ing them resistant to quantum attacks, and they avoid the need for specialized hardware
required by quantum-based schemes. Nevertheless, these protocols face a significant vul-
nerability: the large number of public message exchanges required for synchronization
increases the risk that an attacker, acting as a Man-in-the-Middle, can successfully synchro-
nize their own TPMs with those of the legitimate parties and ultimately recover the shared
key. Motivated by the need to reduce this risk, we propose a novel probabilistic protocol
that enables two parties to securely estimate the size of the shared key during intermediate
steps, without revealing any key material. This estimation allows the protocol to terminate
as soon as sufficient key material has been established, thereby reducing the number of
synchronization rounds and limiting the opportunity for an attacker to synchronize. We
integrate our estimation mechanism into a neural key agreement protocol and evaluate its
performance and security, demonstrating improved efficiency and enhanced resistance to
attacks compared to existing approaches.

Keywords: neural cryptography; key agreement; tree parity machine; cryptography

1. Introduction

Key agreement protocols are fundamental to the security of modern cryptographic
systems. From securing web traffic via the TLS protocol to enabling end-to-end encrypted
messaging platforms such as Signal, the majority of cryptographic applications depend
on robust key agreement mechanisms [1]. The primary objective of these protocols is to
establish a shared secret between two or more parties over potentially insecure communi-
cation channels.

Traditionally, most key agreement protocols rely on hard number-theoretic problems,
including the discrete logarithm problem (DLP), the Diffie-Hellman problem (DHP), the
decisional Diffie-Hellman problem (D-DHP), and the integer factorization problem [2].
A significant drawback of these approaches is their susceptibility to attacks by large-scale
quantum computers. Shor’s seminal work [3] introduced a quantum algorithm capable of
solving both the DLP and the factorization problem in polynomial time. Although quantum
computers of sufficient scale do not yet exist to threaten widely deployed cryptographic
protocols, it is widely anticipated that such technology will emerge in the foreseeable
future [4].

Appl. Sci. 2025, 15, 12746

https:/ /doi.org/10.3390/app152312746

https://doi.org/10.3390/app152312746
https://doi.org/10.3390/app152312746
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5954-7199
https://orcid.org/0000-0002-2409-4959
https://doi.org/10.3390/app152312746
https://www.mdpi.com/article/10.3390/app152312746?type=check_update&version=1

Appl. Sci. 2025, 15, 12746

2of 16

In response to these challenges, three principal alternatives to conventional key agree-
ment protocols have been developed:

1. Post-quantum key agreement protocols,
2. Quantum key agreement protocols,
3. Neural key agreement protocols.

Post-quantum key agreement protocols are based on mathematical problems for which
no efficient solution is known on either classical or quantum computers [5]. However, these
schemes often involve computationally intensive operations over finite fields, which can
hinder their practical deployment [6]. Quantum key agreement protocols, on the other
hand, leverage quantum phenomena such as wave function collapse, entanglement, and
the no-cloning theorem [7]. While these protocols provide strong security guarantees even
against quantum adversaries, they require specialized hardware that is both costly and
challenging to maintain.

Neural key agreement protocols, first introduced in [8], offer an alternative to both
quantum and post-quantum approaches. The core concept involves synchronizing the
weights of two neural networks, specifically Tree Parity Machines (TPMs), through iterative
updates between the communicating parties. The resulting synchronized weights are then
used as a shared secret key. Unlike post-quantum protocols, whose security is predicated
on mathematical problems that may eventually be solved, or quantum protocols, which
necessitate dedicated and expensive hardware, neural key agreement protocols do not rely
on such assumptions or infrastructure.

A central challenge in neural key agreement protocols is the large number of rounds
typically required for two parties to achieve full synchronization of their TPMs. In existing
protocols, the process continues until the entire set of weights is identical, at which point
the shared key is established. However, this approach leads to a substantial communication
overhead and, more critically, increases the risk that an adversary can synchronize their
own TPM with those of the legitimate parties by observing the public exchanges [9]. This
vulnerability is exacerbated as the number of rounds grows, since each additional round
provides further opportunities for an attacker to align their weights.

It is important to note that the weight vector of a TPM generally contains far more
elements than the length required for a standard cryptographic key (e.g., 128 bits). This
observation suggests that it is not necessary to wait for complete synchronization; the
protocol could be terminated once a sufficient number of weights have been aligned to
provide the desired level of security. Early termination would not only reduce the number
of communication rounds—thereby improving efficiency—but also significantly limit the
window in which an attacker might succeed in synchronizing their own TPM.

The main obstacle to implementing early termination is the lack of a secure mech-
anism for the parties to determine the extent of synchronization without revealing any
information about the actual weights. Without such a mechanism, the parties cannot safely
assess whether enough key material has been established to halt the protocol. To address
this limitation, we introduce a privacy-preserving comparison protocol that enables the
two parties to securely estimate the number of synchronized weights after each round,
without disclosing the weight values themselves. By integrating this mechanism into the
neural key agreement protocol, we enable secure early termination based on the amount of
shared key material, thereby enhancing both the efficiency and the security of the protocol.

1.1. Related Work

The concept of employing neural synchronization for key agreement protocols was first
introduced by Kanter et al. [8], who proposed a method enabling two parties to synchronize
the weights of their respective three-layer neural networks, known as Tree Parity Machines

Appl. Sci. 2025, 15, 12746

30f16

(TPMs), over a public channel. This approach was designed to prevent any third party from
reconstructing the weights, even with access to all exchanged information. Shortly there-
after, Klimov et al. [9] identified three classes of attacks against this protocol, demonstrating
through extensive experimentation that a geometric attack could allow an adversary to
recover up to 90% of the shared key. In response to these vulnerabilities, Mislovaty et al. [10]
provided experimental evidence that increasing the range of possible weight values can
enhance the protocol’s security. Nevertheless, Shacham et al. [11] subsequently introduced
a more advanced attack that remains effective even when the weight range is expanded,
underscoring the persistent challenges in securing neural synchronization-based protocols.

To further strengthen the security of neural key agreement protocols, a variety of
alternative strategies have been explored [12]. For instance, Ruttor et al. [13] proposed
dynamically generating TPM inputs based on the current internal state of the network,
thereby increasing the unpredictability of the synchronization process. In a different
approach, Allam et al. [14,15] developed algorithms that perturb the TPM output, making
it more difficult for adversaries to reconstruct the original information while still enabling
legitimate parties to achieve synchronization. Although these methods enhance security
under the assumption that an eavesdropper can intercept all public communications, they
often result in increased synchronization times.

Recent research has also focused on novel TPM architectures and input representations.
Stypinski et al. [16] introduced nonbinary input values to accelerate protocol execution,
while Jeong et al. [17] demonstrated that vector-valued inputs can further improve both
efficiency and security. Similarly, Dong et al. [18] investigated the use of complex-valued
inputs in TPMs. The security implications of nonbinary inputs were systematically analyzed
by Stypinski et al. [19], providing deeper insights into the robustness of these protocols. In
addition to architectural innovations, parameter selection for TPMs has been systematically
studied by Salguero et al. [20], who analyzed various parameter sets and reported their
effects on both synchronization time and security.

Beyond theoretical advancements, several studies have examined practical applica-
tions of neural cryptography. For example, Sarkar et al. [21] utilized TPM-based mecha-
nisms to enable secure access to medical data, while Sarkar et al. [22] developed a chaos-
based neural synchronization method for secret sharing within a public-key framework.
Gupta et al. [23] applied neural cryptography to the secure distribution of image shares.
Additionally, Plesa et al. [24] proposed a TPM architecture based on spiking neural net-
works, evaluating its performance and resilience to man-in-the-middle attacks. Notably, the
efficiency gains of this protocol are most pronounced when implemented on neuromorphic
hardware [25].

Table 1 provides a comparison of the main TPM-based key agreement protocols,
highlighting their core ideas, advantages, and limitations relative to our proposal.

Table 1. Comparison of TPM-based key agreement protocols.

Protocol

Limitations/Comparison

Core Idea/Modification to Our Protocol

Advantages

Kanter et al. [8]

Original TPM
synchronization protocol
over public channel

Vulnerable to geometric
attacks; no early
termination mechanism

Simple, does not rely on
trapdoor functions

Mislovaty et al. [10]

Still vulnerable to
advanced attacks; no
protocol-level fix

Reduces success rate of
some attacks

Increased weight range to
improve security

Appl. Sci. 2025, 15, 12746

4of 16

Table 1. Cont.

Core Idea/Modification

Advantages

Limitations/Comparison
to Our Protocol

Ruttor et al. [13]

Dynamic input generation
based on internal state

Increases unpredictability,
improves security

Increases synchronization
time; more complex
implementation

Allam et al. [14,15]

Output perturbation to
confuse adversaries

Harder for attacker to
reconstruct weights

Slower synchronization;
more rounds required

Stypinski et al. [16]

Nonbinary input vectors
for TPMs

Faster synchronization,
improved efficiency

Security depends on
parameters; geometric
attacks still possible

Jeong et al. [17]

Vector-valued inputs
for TPMs

Improves efficiency
and security

Implementation
complexity; not immune to
all attacks

Dong et al. [18]

Complex-valued TPMs

Novel input representation;
potential for
higher security

Security analysis limited;
practical deployment
unclear

Salguero et al. [20]

Parameter optimization
for TPMs

Systematic study of
security vs. efficiency
trade-offs

Does not address
protocol-level
vulnerabilities

Plesa et al. [24]

Spiking neural
network TPMs

Improved efficiency on
neuromorphic hardware

Security against geometric
attacks not fully resolved

Our Protocol

Privacy-preserving
synchronization check with
early termination

Significantly reduces
rounds; effectively
mitigates geometric attacks

Readily integrates with
existing TPM frameworks;
offers promising potential

for practical deployment

1.2. Our Contribution

The primary contributions of this study are summarized as follows:

1. We introduce a novel probabilistic algorithm that allows two parties engaged in
a neural key agreement protocol to privately compute the proportion of synchronized
weights at intermediate stages, without revealing the actual weight values.

2. Leveraging this algorithm, we develop a new key agreement protocol based on the
non-binary TPM model proposed by [16].

3. We perform a comprehensive security analysis of our protocol, evaluating its resilience
against both naive and geometric attacks, and benchmark its robustness against the
protocol presented in [16].

4. We empirically demonstrate the efficiency of our protocol by analyzing its complexity
in terms of the number of rounds required for synchronization, as a function of the
number of hidden units in the TPM and the weight range, and compare these results
with those of [16].

The remainder of the paper is organized as follows. Section 2 introduces the Tree Parity
Machine (TPM) model, providing the necessary background as described in [16]. Our main
technical contributions begin in Section 3, where we present our novel algorithm for privacy-
preserving weight comparison. Section 4 builds on this by detailing our proposed neural
key agreement protocol, which integrates the privacy-preserving mechanism. In Section 5,
we provide a comprehensive experimental evaluation of our protocol, analyzing both its
security and efficiency compared to existing approaches. Finally, Section 6 concludes the
paper and discusses directions for future research.

Appl. Sci. 2025, 15, 12746

50f 16

2. Tree Parity Machine

The Tree Parity Machine (TPM) model utilized in this study, as originally introduced
in [16], is a three-layer neural network consisting of an input layer, a hidden layer, and
an output layer. The input layer is partitioned into K groups, each comprising N neurons.
Each neuron within a group is connected to a corresponding neuron in the hidden layer,
and all hidden neurons are collectively connected to a single output neuron.

The network inputs, denoted by Xji for1 <i < Nand1 <j <K, are integer values
constrained by —M < xj; < M, where M € Z. The synaptic weights connecting the input
and hidden layers, represented as wj;, are also integers, bounded by —L < wij; < L, with
LeZ.

The activation of each hidden neuron, y;, is computed by applying the sign function
to the weighted sum of its inputs:

N
Yi= U(Z xjiwji>/ (1)
i=1

where o (x) denotes the sign function.
The output neuron, denoted by O, calculates the product of the activations of all
hidden neurons:

—

O=]ly)
j=1
The weights of the network are updated according to the Hebbian learning rule, as
described in [26]:

Wjj <= Wj; —i—OxjidD(yj,O), 3)
where

* wj; is the weight of the i-th input to the j-th hidden neuron,
* xj; is the corresponding input value,

* yjis the output of the j-th hidden neuron,

* Ois the global output of the TPM,

* ®(a,b) is the indicator function:

1, ifa=0b,

®d(a,b) =
(@) 0, otherwise.

Figure 1 illustrates the structure of the TPM.

Figure 1. The structure of a Tree Parity Machine.

Appl. Sci. 2025, 15, 12746

6 of 16

3. Weights Comparison Algorithm

Consider two parties, P; and P, participating in a neural key agreement protocol.
Let w1 and w”2 denote the respective KN-dimensional weight vectors of their TPMs. The
proposed comparison protocol, PrivComp, enables the parties to privately compute not
only the number of synchronized weights, but also to identify which specific weights have
been synchronized, without revealing the actual values of the weights to any external
observer. This is achieved under the honest-but-curious security model, where both parties
are assumed to follow the protocol correctly, but an adversary may passively intercept
all messages exchanged during PrivComp in an attempt to infer the secret weights. The
protocol proceeds as follows:

Initially, P; constructs a vector d! by flattening its weight matrix w”1, and generates
a decoy vector d? of the same length, where each entry is independently sampled from the
range —L < d% < L. For each position 1 <i < KN, P; randomly decides whether to swap
the values of d! and d?, thereby obscuring the correspondence between the actual weights
and the decoy elements. After performing these random swaps, P; transmits both d' and
d? to Ps.

Upon receiving the vectors, P, compares each of its own weights with the correspond-
ing entries in d' and d2. Specifically, P, constructs a binary vector mask, where mask; = 1 if
wlp2 matches either d} or d?, and mask; = 0 otherwise. The Hamming weight S of the mask
vector, representing the number of matches, is then computed. If S exceeds a predefined
security threshold 7, P, returns the mask vector to P;; otherwise, the protocol terminates
with output L.

An adversary intercepting the vectors sent by P; cannot deduce the actual weights, as
the random swapping introduces 2XN possible configurations. Although the mask vector
could potentially reduce the brute-force search space by indicating positions of possible
matches, the threshold T ensures that an attacker must still consider at least 27 possibilities,
thereby preserving the desired level of security.

The underlying intuition is that, due to the synchronization process, the probability
that P, observes a match at position i without the actual weights being synchronized
is low. Consequently, if mask; = 1, it is highly likely that the corresponding weights
are synchronized.

The output of the PrivComp protocol is the common set weights, or L if the number of
matches is below the threshold 7.

The following theorems establish the correctness and security of our construction.

Theorem 1 (Correctness). Let w”1, w2 € {—L,..., L}*N denote the weight vectors of parties
Py and P,. Let d*,d?* be constructed as specified in the protocol, and let mask € {0, 1}XN be the
output of Pp. Then, for any positioni € {1,...,KN}:

1. If wZDl # wzpz, the probability that mask; = 1 (i.e., a false positive) is at most ﬁ

2. I wZD] = wlpz, then mask; = 1 with probability 1 (i.e., a true positive).

Proof. Fix any positioni € {1,...,KN}.
Case 1: wlPl # wIPZ (False Positive Probability).
1

According to the protocol, for each index i, one of {d},d?} contains the true value w

while the other contains a randomly generated decoy. The assignment is governed by the

P
i
swap bit sw;: if sw; = 0, then d] = wlpl and d? is a decoy; if sw; = 1, then d? = wlpl and d}
is a decoy.

Let 7 be the random decoy sampled uniformly from {—L,...,L}.

There are two cases, each occurring with probability 1/2:

Appl. Sci. 2025, 15, 12746

7 of 16

e With probability 1/2, (d!,d?) = (w]", 7).
e With probability 1/2, (d!,d?) = (r,w]").

In both cases, wZ’Z can match d} or d? only if wZ’Z = r (since wlPl #+ wZ’Z by assumption).
Since r is uniformly distributed over 2L + 1 values, the probability that r = wle is ﬁ
There are two opportunities (either d} or d?), so by the union bound, the probability
P i 1 2 5 1 2
that w; > matches either d; or di is at most 2 - 5 = 5777
Case 2: wlPl = wZ’Z (True Positive Probability).

Regardless of the value of sw;, either d} or d? will be equal to w
Po
i

Py
Ha
Therefore, w;* will always match at least one of d} or diz, so mask; = 1 with

probability 1. [

Theorem 2 (Security). Let Py send the vectors d,d> € {—L,...,L}XN to P, as specified in the
protocol, where each position is randomly swapped. Let mask € {0,1}XN be the binary vector sent
by Py to Py only if the number of 1s in mask is at least T. Then, for any eavesdropper intercepting
the communication:

1. Before mask is sent, the eavesdropper must consider all 2KN
recover the real weights of P.

2. After mask is sent, the eavesdropper must consider at least 2 possible swap configurations.

possible swap configurations to

In both cases, the attacker faces an exponential search space in the relevant parameter.

Proof. (1) Security Before mask is Sent:
When P; sends d' and d?, each entry is either the real weight or a random decoy,
determined by the secret swap vector sw € {0, 1}KN

not know whether di1 or d% is the real weight. Thus, to recover the real weight vector, the

. For each position i, the attacker does

attacker must guess the entire swap vector sw, which has 2KV possible configurations.

(2) Security After mask is Sent:

When P; sends the mask vector mask, the attacker learns which positions i have
a match with P,’s weights. For each position i where mask; = 1, the real weight of P,
could be either d} or d?. For positions where mask; = 0, the attacker knows neither value
is the real weight, so these positions can be ignored in the brute-force search.

Let S be the number of bits of 1 in the mask. The attacker must guess the swap bits
for these S positions, resulting in 2° possible configurations. By protocol, S > T, so the
brute-force complexity is at least 27.

Conclusion: In both cases, the attacker must consider an exponential number of
possible swap configurations, either 2KN or at least 27, to recover the real weights. This
ensures the protocol’s security against brute-force attacks by an eavesdropper. [

The protocol is described in Box 1.

Appl. Sci. 2025, 15, 12746

8 of 16

Box 1. The PrivComp protocol for privacy-preserving weight comparison.

1. Decoy Generation: P initializes d' with its actual weights w” and generates a
decoy vector d?, where each entry is sampled uniformly from the weight range:

P .
dl «w;', Vie{l,..., KN} 4)
d> ~ Unif{—L,~L+1,...,L}, Vie{l,...,KN} (5)

2. Random Swapping and Transmission: P; generates a random binary vector sw,
where each entry is sampled uniformly from {0,1}. For each index i, if sw; = 1,
the entries d} and d? are swapped. Both vectors are then sent to P:

sw; ~ Unif{0,1}, Vie {1,...,KN} (6)
(d},d?) < (d2,d}), if sw; =1 (7)
P1— Py (d,d?))

3. Comparison: P, compares each of its weights wlPZ with d} and d?, constructing
the mask vector:

o1 ifw!? e {d}d?) ‘
mask([i] = Vvie {1,...,KN} 9)

0, otherwise

4. Threshold Verification and Response: P, computes S = ZZKZI\{ mask[i]. If S > T,
P> returns the mask vector to P;:

IftS>t, Pp,—P;:mask (10)
5. Output: If S > T, both parties output the set of synchronized weights:
¢ — [P1 111 — [P N —
w® = {w;' | maskl[i] = 1} = {w; ? | mask[i] = 1}.

Otherwise, both parties output L.

4. Neural Key Agreement Protocol

In this section, we present the neural key agreement protocol, which incorporates our
privacy-preserving comparison protocol, PrivComp, to securely determine the extent of
synchronization between the parties. The protocol is detailed in Box 2. All computations, in-
cluding weight updates, are performed within the range [—L, L] with appropriate clipping.

The proposed protocol follows the general architecture of neural key agreement
schemes, as outlined in [8,16]. Its primary innovation, however, is the integration of
a privacy-preserving comparison protocol, which allows the participating parties to ter-
minate the synchronization process as soon as a sufficient number of weights have been
aligned. This enhancement not only increases the protocol’s efficiency by reducing the
number of required rounds, but also significantly improves its security. As noted in [9], the
probability that an adversary can successfully synchronize a third TPM with those of the
legitimate parties grows with the number of rounds observed. By minimizing unnecessary
rounds, the protocol effectively mitigates this risk.

Regarding correctness, it has been established in [8] that two TPMs will eventually
synchronize, as the process can be modeled as a random walk within a finite weight space.
Each party updates its weights only when the outputs of the corresponding hidden neurons
are identical. This selective update rule ensures that the weight vectors do not diverge, but
instead gradually converge towards synchronization. In essence, updates are performed

Appl. Sci. 2025, 15, 12746

9o0f 16

exclusively under conditions that promote alighment, thereby guaranteeing convergence
of the protocol.

Box 2. Neural key agreement protocol with privacy-preserving synchronization check.

1. Parameter Setup and Initialization: The parties P; and P, agree on the protocol
parameters K, N, M, L, and independently initialize their TPM weights uniformly

at random:
P . .
wji1 ~ Unif{-L,..., L}, v(j,i)e{1,..., K} x{1,...,N}, (11)
P, . ..
w].i2 ~ Unif{—-L,...,L}, V(i) e{1,..., K} x{1,...,N}. (12)

2. Input Generation: Both parties agree on a common random input vector x, either
by exchanging the vector directly or by sharing a common random seed:

xj ~ Unif{—M,..., M}, V(i) € {1,...,K} x {1,...,N}. (13)

3. Computation and Output Exchange: Each party computes the activations of the
hidden neurons and the TPM output, then exchanges the output value with the

other party:
P al P
yil=0o ijiwjil>r vie{l...,K}, (14)
i=1
P N P
yi? = U(Z xjiwji2>r Vie{l,...,K}, (15)
i=1
K
OPl — Hy]Pl, (16)
i=1
K
oP: — Hy]Pz, (17)
i=1
OP] o Opz‘ (18)

4. Weight Update: If the outputs coincide, each party updates its weights according
to the Hebbian learning rule, but only for those hidden neurons whose activation
matches the global output:

If OP = OP2 = O, then (19)

;1
ji
;2
ji

o' +0x;®(y],0), V(i) €{l,....K} x{1,...,.N}, (20)
Wl +0x;®(y]%,0), V(i) €{l....K} x{l,...,N}. (1)

5. Synchronization Check and Output: Both parties execute the PrivComp protocol
to privately estimate the number of synchronized weights. If the result is L,
indicating insufficient synchronization, the protocol returns to Step 2. Otherwise,
both parties output the set of synchronized weights w* as the shared secret key.

There are two principal types of attacks on neural key agreement protocols, both of which
are relevant in the context of the honest-but-curious adversarial model. In this model, the
adversary is assumed to have full access to all messages exchanged over the public channel
and may attempt to infer secret information by passively observing the protocol, but does not
deviate from the prescribed protocol steps or actively interfere with the communication.

Appl. Sci. 2025, 15, 12746

10 of 16

In a naive attack (illustrated in Box 3, the honest-but-curious adversary attempts to
synchronize its own TPM with those of the legitimate parties by simply following the
same protocol as the participants. The success of such an attack is directly influenced
by the number of synchronization rounds observed, which highlights the importance of
minimizing protocol duration to limit the adversary’s opportunity for synchronization.

Box 3. Naive attack against the neural key agreement protocol.

1. Attacker Initialization: The adversary A independently initializes the weights of its
own TPM:

wf ~ Unif{—L,..., L}, v(j,i) e {1,..., K} x {1,...,N}. (22)

2. Local Computation: The attacker 4 observes the public input vector x used by the
legitimate parties and computes the activations of its hidden neurons and the output of

its TPM:
A ul A
yi =0 ijiwji , vie{1,...,K},
i=1
A K A
07 = H?/j .
=1

3. Synchronization Attempt: The attacker .A monitors the outputs O” and O”2 exchanged
between the legitimate parties. Whenever OP' = 072 = 04, the attacker updates its
weights according to the same Hebbian learning rule:

wi —wi + 04 x;(y,04), V(i) e{l,..., K} x{1,...,N}. (23)

4. Output: The attacker .A continues this process for as long as P; and P, execute the

protocol. Upon termination, A outputs its current weight vector wA
shared secret.

as its estimate of the

In a geometric attack, the adversary leverages additional information from the protocol
execution to improve its chances of synchronization, even when its own output does not
match those of the legitimate parties. Specifically, when the attacker’s output differs, the
adversary identifies the hidden neuron whose associated weights are closest to the input
hyperplane and selectively flips its activation. This advanced technique, introduced by [9],
allows the honest-but-curious adversary to make progress toward synchronization despite
output mismatches, thereby posing a more significant threat than the naive attack. The
geometric attack is detailed in Box 4.

Appl. Sci. 2025, 15, 12746

11 of 16

Box 4. Geometric attack against the neural key agreement protocol.

1. Attacker Initialization: The adversary A independently initializes the weights of its TPM:
wfl ~ Unif{~L,...,L}, V(j,i)€{l,...,K} x{1,...,N}.

2. Local Computation: The attacker .4 observes the public input vector x and, for each
hidden unit j, computes:

N
p;“ — Zxﬁwf?' vie{1,...,K},
i=1

vt =o(p), Vie{l,... K},
A_TT,A
0% =TTy

=1

3. Geometric Update: The attacker .A observes the outputs O™ and O”2 exchanged by the
legitimate parties and proceeds as follows:

IfOP' =0P> =0and OA # O

Let jo = argmin | p]A| (the hidden neuron closest to its hyperplane).
]

Define the flipped hidden vector:

_ -y ifj=jo, .
y;“—{ A vjie{1,...,K}.

y; otherwise

wi — wi + 04 x; (7, 04), V(i) e{1,..., K} x{1,...,N}.

{0 =0™ =0and 04 =0
wi — wi +0x;®(y,0), V(i) € {l,...,K} x{1,...,N}.
4. Output: The attacker A repeats the above steps for as long as P; and P; are executing the

protocol. When the protocol terminates, .A outputs its current weight vector w*.

5. Experiments

The experimental evaluation focuses on two key aspects of the neural key agreement
protocol: efficiency and security. Efficiency is measured in terms of the number of rounds
required for synchronization, while security is assessed by the percentage of the shared
key that can be recovered by an attacker. We consider two types of attacks: naive and
geometric [9]. While naive attacks generally pose little threat to neural key agreement
protocols, geometric attacks represent a significant vulnerability and are the primary reason
such protocols are not widely regarded as secure. In each experiment, we compare our
protocol to that of [16], which follows an identical message flow, with the only difference
being that synchronization steps (1-4) from Box 2 are executed until all weights are equal.
For all experiments involving our protocol, we set the threshold T = 128, reflecting

a realistic scenario in which an attacker would need to brute-force 2128

possible swap
configurations, as established in Theorem 2.

Efficiency: In the first set of experiments, we assess the efficiency of the protocol
with respect to K (the number of hidden neurons) and L (the range of weight values). For

both experiments, we fix N = 128 and M = 8. In the first experiment, with L = 16, we

Appl. Sci. 2025, 15, 12746

12 of 16

compute the number of rounds required to synchronize the TPMs in 50 trials for each value
of K € {3,4,...,12}, and report the average. Similarly, in the second experiment, with
K = 3, we average the number of rounds over 50 trials for each value of L € {16,17,...,47}.
Figures 2 and 3 present the results for the classic protocol of [16], while Figures 4 and 5
show the results for our protocol. Although both protocols exhibit similar complexity with
respect to the weight range L, our protocol demonstrates superior efficiency as K increases.
Specifically, while the protocol of [16] exhibits exponential growth in the number of rounds
with increasing K, our protocol shows an exponential decrease. This improvement is
attributable to the early termination mechanism: as K increases, the parties reach the key
length threshold more rapidly, allowing the protocol to halt sooner.

TPM Synchronization: Rounds vs K (M=8, L=16, N=1024)

400,000 A
y=125.67e*0-67x _ 4091 .32 ;"
350,000 - T
1
"I'
i
= 300,000 - i
o !
2 ;
N I
< 250,000 - i
£ i
g o/
=
200,000 £
[=]
+— !
B /
5 150,000 | ;
g /
g
]
@ 100,000 ¥
= /
< o
.
50,000 —
" "’«h
—-"’“" @ Average rounds
- o gy 9
01 &= 8- === Regularized exponential fit
3 6 8 10 12

K (number of hidden units)

Figure 2. Number of rounds vs. K for the protocol of [16].

TPM Synchronization: Rounds vs L (M=8, K=3, N=1024)

4 P]
3500 1y =1.84x197 = 0,59 »
v
’
/f

3000 - &
§ Xt
@ .
£ 2500+ i
e #
= S
S 2000 ’,_r
8 .
§ ,/.1
@ 1500 -
z P
Ju ."
g L 4
I IV.’

1000 rg

_‘-.’
“J
_e”
500 4 - [Averagg rounds .
g === Regularized power fit
15 20 25 30 35 40 45

L (weight bound)

Figure 3. Number of rounds vs. L for the protocol of [16].

Appl. Sci. 2025, 15, 12746 13 0f 16

TPM Synchronization: Rounds vs K (M=8, L=16, N=1024)

° 0.20K ® Average rounds
w=101.68e7"<" - 0.69 --- Exponential decay fit
\\
50 5
AY
Ay
A
) *
= N
: N
@ o >
@ 40 - NCe
g R
S A"
@ Y
a2 S
*E \\0
= 301 A
g ~
° N
g
g L
e N
Z 201 T~
\“"4\,“
~~.
e -~
\‘""_‘
10 - .
T T T T T
4 6 8 10 12

K (number of hidden units)

Figure 4. Number of rounds vs. K for our protocol.

TPM Synchronization: Rounds vs L (M=8, K=3, N=1024)

L]
ool ¥=0.08L233+0.65 D
j
r
/I
o0
S 500 &
2 .
8 o’
5 o~ ®
= o
E 400 ,/'
st ee
W "
€ 300 1 }:'
e ./.’
g‘ -
@ o
g 200 ‘/f =
0o
=@
100 - P B
_2-r @ Average rounds
en® ge i
=== Regularized power fit
T T T T T T T
15 20 25 30 35 40 45

L (weight bound)

Figure 5. Number of rounds vs. L for our protocol.

To evaluate the practical efficiency of our proposed protocol, we conducted a series
of experiments comparing its average running time to that of the classic protocol of [16].
The experiments were performed on a system equipped with an Intel® Xeon® Gold 5512U
processor (12 cores per socket) manufactured by Intel Corporation, Santa Clara, CA, USA,
along with approximately 60 GB of RAM. Table 2 summarizes the average running time (in
seconds) required to achieve key agreement for both protocols, across a range of values for
the hidden layer size K.

Appl. Sci. 2025, 15, 12746

14 of 16

Table 2. Comparison of average running time (in seconds) for key agreement between the Protocol
of [16] and our protocol, for various values of K.

K Protocol of [16] Our Protocol
3 0.03 0.22
4 0.05 0.22
5 0.13 0.24
6 0.37 0.20
7 0.83 0.20
8 1.69 0.18
9 3.81 0.16

As shown in the table, while the classic protocol is slightly faster for small values of K,
our protocol demonstrates a dramatic improvement in efficiency as K increases. For exam-
ple, at K = 9, our protocol achieves key agreement in an average of just 0.16 s, compared
to 3.81 s for the protocol of [16]—a speedup of more than an order of magnitude. This
trend becomes increasingly pronounced for larger K, which is of paramount importance for
security, as higher values of K are known to significantly enhance resistance against known
attacks. These results highlight the practical advantage of our protocol in scenarios where
strong security is required.

Security: In the second set of experiments, we evaluate the resilience of both protocols
against naive and geometric attacks by measuring the proportion of the shared key that
an attacker can recover. For all security experiments, we set K = 3, a common choice in
the literature [8,16]. In our protocol, the threshold for the shared key length is set to 180,
meaning that once 180 weights are synchronized, the protocol terminates. The success of an
attack is quantified as the synchronization percentage, defined as the ratio of the number of
weights correctly recovered by the attacker to the total length of the shared key.

Table 3 presents the results for the naive attack. As expected from prior work [8,16],
neural key agreement protocols are robust against naive attacks. This robustness arises
from the synchronization process itself: while the legitimate parties update their weights
only when their output neurons agree, the attacker can update only when all three outputs
coincide. This discrepancy allows the legitimate parties to synchronize before the attacker
can recover a significant portion of the key. Notably, since our protocol halts synchroniza-
tion once sufficient key material has been established, both the average and maximum
synchronization percentages for the attacker are lower compared to the protocol of [16].

Table 3. Comparison of synchronization percentages between the two protocols for k = 3 in the
naive attack.

Protocol Average (%) Maximum (%)
Protocol of [16] 9.75 28.32
Our Protocol 6.90 27.27

The results for the geometric attack, shown in Table 4, reveal a stark contrast between
the two protocols. While the protocol of [16] yields an average attacker synchronization per-
centage of 65.02%, our protocol limits this to only 6.90%. More importantly, the maximum
synchronization percentage for the attacker reaches 100% in the classic protocol, indicating
that the attacker can occasionally recover the entire shared key. In contrast, the maximum in
our protocol is approximately 27%. Given that our shared key consists of 180 weights, even
recovering 30% of the key still leaves the attacker with more than 126 unknown weights,
corresponding to a brute-force search space of 200 when L = 16.

Appl. Sci. 2025, 15, 12746

150f 16

References

Table 4. Comparison of synchronization percentages between the two protocols for k = 3 in the
geometric attack.

Protocol Average (%) Maximum (%)
Protocol of [16] 65.02 100.00
Our Protocol 6.90 27.27

6. Conclusions and Further Directions of Research

In this paper, we introduced a novel protocol that enables two parties engaged in
a neural key agreement process to privately determine which weights have been synchro-
nized at intermediate stages. This capability allows the parties to terminate the synchroniza-
tion process as soon as sufficient key material has been established, thereby improving both
the efficiency and security of the protocol. We formally proved the correctness and security
of our approach and demonstrated how it can be seamlessly integrated into a neural key
agreement protocol.

Our experimental results show that the proposed protocol not only reduces the number
of rounds required for synchronization, but also significantly enhances security, particu-
larly against geometric attacks, the primary vulnerability in existing neural key agreement
schemes. By comparing our protocol to the state-of-the-art approach from [16], we demon-
strated substantial improvements: in our protocol, the number of rounds required for
synchronization decreases as the number of hidden units increases, whereas in the alter-
native protocol, this number grows exponentially. Furthermore, our protocol effectively
mitigates the geometric attack, limiting the attacker’s ability to recover the shared key,
while the alternative protocol remains vulnerable to complete key recovery by an adversary.

While our results are promising, we do not claim that neural key agreement pro-
tocols incorporating our privacy-preserving comparison procedure are ready for im-
mediate deployment in real-world scenarios. Rather, our work demonstrates that the
main limitation of such protocols, i.e., the vulnerability to geometric attacks, can be
addressed. An important direction for future research is to establish the security of
these protocols within a standard cryptographic framework, which remains an open
challenge for all neural key agreement protocols. The implementation is available at
https:/ / github.com/miiip /Neural-Key-Agreement- (accessed on 26 November 2025).

Author Contributions: Conceptualization, M.-L.P.; methodology, M.-L.P, EI. and M.G.; software,
M.-LP; validation, M.-L.P,, EI. and M.G.; formal analysis, M.-L.P.; investigation, M.-L.P.; resources, M.-
LP; data curation, M.-1.P,; writing—original draft preparation, M.-L.P,; writing—review and editing,
M.-LP, EI. and M.G,; visualization, M.-L.P; supervision, EI. and M.G.; project administration, M.-L.P.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Data Availability Statement: Data available in a publicly accessible repository.

Conflicts of Interest: The authors declare no conflicts of interest.

1. Cohn-Gordon, K.; Cremers, C.; Dowling, B.; Garratt, L.; Stebila, D. A formal security analysis of the signal messaging protocol. J.
Cryptol. 2020, 33, 1914-1983. [CrossRef]
2. Goldreich, O. Foundations of Cryptography: Volume 2, Basic Applications; Cambridge University Press: Cambridge, UK, 2009.

3. Shor, PW. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 1999,

41, 303-332. [CrossRef]

4. Peng, W.; Wang, B.; Hu, F; Wang, Y.; Fang, X.; Chen, X.; Wang, C. Factoring larger integers with fewer qubits via quantum
annealing with optimized parameters. Sci. China Phys. Mech. Astron. 2019, 62, 1-8. [CrossRef]

https://github.com/miiip/Neural-Key-Agreement-
http://doi.org/10.1007/s00145-020-09360-1
http://dx.doi.org/10.1137/S0036144598347011
http://dx.doi.org/10.1007/s11433-018-9307-1

Appl. Sci. 2025, 15, 12746 16 of 16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Alagic, G.; Alagic, G.; Alperin-Sheriff, J.; Apon, D.; Cooper, D.; Dang, Q.; Liu, Y.K.; Miller, C.; Moody, D.; Peralta, R.; et al. Status
Report on the First Round of the NIST Post-Quantum Cryptography Standardization Process; Technical Report; National Institute of
Standards and Technology: Gaithersburg, MD, USA, 2019.

Paquin, C,; Stebila, D.; Tamvada, G. Benchmarking post-quantum cryptography in TLS. In Post-Quantum Cryptography, Proceedings
of the 11th International Conference, PQCrypto 2020, Paris, France, 15-17 April 2020; Springer: Berlin/Heidelberg, Germany, 2020;
pp- 72-91.

Pirandola, S.; Andersen, U.L.; Banchi, L.; Berta, M.; Bunandar, D.; Colbeck, R.; Englund, D.; Gehring, T.; Lupo, C.; Ottaviani, C.;
et al. Advances in quantum cryptography. Adv. Opt. Photonics 2020, 12, 1012-1236. [CrossRef]

Kanter, I.; Kinzel, W.; Kanter, E. Secure exchange of information by synchronization of neural networks. EPL Europhys. Lett. 2002,
57,141. [CrossRef]

Klimov, A.; Mityagin, A.; Shamir, A. Analysis of neural cryptography. In Proceedings of the International Conference on the
Theory and Application of Cryptology and Information Security, Queenstown, New Zealand, 1-5 December 2002; Springer:
Berlin/Heidelberg, Germany, 2002; pp. 288-298.

Mislovaty, R.; Perchenok, Y.; Kanter, I.; Kinzel, W. Secure key-exchange protocol with an absence of injective functions. Phys. Rev.
E 2002, 66, 066102. [CrossRef] [PubMed]

Shacham, L.N.; Klein, E.; Mislovaty, R.; Kanter, I.; Kinzel, W. Cooperating attackers in neural cryptography. Phys. Rev. E 2004,
69, 066137. [CrossRef] [PubMed]

Klein, E.; Mislovaty, R.; Kanter, I.; Ruttor, A.; Kinzel, W. Synchronization of neural networks by mutual learning and its application
to cryptography. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2004; Volume 17.
Ruttor, A.; Kinzel, W.; Kanter, I. Neural cryptography with queries. J. Stat. Mech. Theory Exp. 2005, 2005, P01009. [CrossRef]
Allam, A.M.; Abbas, H.M. Improved security of neural cryptography using don’t-trust-my-partner and error prediction. In
Proceedings of the 2009 International Joint Conference on Neural Networks, Atlanta, GA, USA, 14-19 June 2009; IEEE: Piscataway,
NJ, USA, 2009; pp. 121-127.

Allam, A.M.; Abbas, HM. On the improvement of neural cryptography using erroneous transmitted information with error
prediction. IEEE Trans. Neural Netw. 2010, 21, 1915-1924. [CrossRef] [PubMed]

Stypifiski, M.; Niemiec, M. Synchronization of Tree Parity Machines Using Nonbinary Input Vectors. IEEE Trans. Neural Netw.
Learn. Syst. 2024, 35, 1423-1429. [CrossRef] [PubMed]

Jeong, S.; Park, C.; Hong, D.; Seo, C.; Jho, N. Neural cryptography based on generalized tree parity machine for real-life systems.
Secur. Commun. Netw. 2021, 2021, 680782. [CrossRef]

Dong, T.; Huang, T. Neural cryptography based on complex-valued neural network. IEEE Trans. Neural Netw. Learn. Syst. 2019,
31, 4999-5004. [CrossRef] [PubMed]

Stypiniski, M.; Niemiec, M. Impact of Nonbinary Input Vectors on Security of Tree Parity Machine. In Multimedia Communications,
Services and Security, Proceedings of the 11th International Conference, MCSS 2022, Krakéw, Poland, 3—4 November 2022; Springer:
Berlin/Heidelberg, Germany, 2022; pp. 94-103.

Salguero Dorokhin, E.; Fuertes, W.; Lascano, E. On the development of an optimal structure of tree parity machine for the
establishment of a cryptographic key. Secur. Commun. Netw. 2019, 2019, 214681. [CrossRef]

Sarkar, A.; Sarkar, M. Tree parity machine guided patients’ privileged based secure sharing of electronic medical record:
Cybersecurity for telehealth during COVID-19. Multimed. Tools Appl. 2021, 80, 21899-21923. [CrossRef] [PubMed]

Sarkar, A. Secure exchange of information using artificial intelligence and chaotic system guided neural synchronization.
Multimed. Tools Appl. 2021, 80, 18211-18241. [CrossRef]

Gupta, M.; Gupta, M.; Deshmukh, M. Single secret image sharing scheme using neural cryptography. Multimed. Tools Appl. 2020,
79,12183-12204. [CrossRef]

Plesa, M.I.; Gheoghe, M.; Ipate, F.; Zhang, G. A key agreement protocol based on spiking neural P systems with anti-spikes. J.
Membr. Comput. 2022, 4, 341-351. [CrossRef]

Young, A.R.; Dean, M.E,; Plank, J.S.; Rose, G.S. A review of spiking neuromorphic hardware communication systems. IEEE
Access 2019, 7, 135606-135620. [CrossRef]

Ruttor, A.; Kinzel, W.; Kanter, I. Dynamics of neural cryptography. Phys. Rev. E 2007, 75, 056104. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1364/AOP.361502
http://dx.doi.org/10.1209/epl/i2002-00552-9
http://dx.doi.org/10.1103/PhysRevE.66.066102
http://www.ncbi.nlm.nih.gov/pubmed/12513342
http://dx.doi.org/10.1103/PhysRevE.69.066137
http://www.ncbi.nlm.nih.gov/pubmed/15244697
http://dx.doi.org/10.1088/1742-5468/2005/01/P01009
http://dx.doi.org/10.1109/TNN.2010.2079948
http://www.ncbi.nlm.nih.gov/pubmed/20937580
http://dx.doi.org/10.1109/TNNLS.2022.3180197
http://www.ncbi.nlm.nih.gov/pubmed/35696483
http://dx.doi.org/10.1155/2021/6680782
http://dx.doi.org/10.1109/TNNLS.2019.2955165
http://www.ncbi.nlm.nih.gov/pubmed/31880562
http://dx.doi.org/10.1155/2019/8214681
http://dx.doi.org/10.1007/s11042-021-10705-6
http://www.ncbi.nlm.nih.gov/pubmed/33776546
http://dx.doi.org/10.1007/s11042-021-10554-3
http://dx.doi.org/10.1007/s11042-019-08454-8
http://dx.doi.org/10.1007/s41965-022-00110-9
http://dx.doi.org/10.1109/ACCESS.2019.2941772
http://dx.doi.org/10.1103/PhysRevE.75.056104
http://www.ncbi.nlm.nih.gov/pubmed/17677130

	Introduction
	Related Work
	Our Contribution

	Tree Parity Machine
	Weights Comparison Algorithm
	Neural Key Agreement Protocol
	Experiments
	Conclusions and Further Directions of Research
	References

