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Abstract. Spiking Neural P systems, SN P systems for short, have
found various applications over time. Perhaps the most important ap-
plication to date is in the area of artificial intelligence where SN P sys-
tems are significant models of the third generation of neural networks.
Another application of SN P systems that has not been researched much
is cryptography. SN P systems can be used as computational devices on
which various cryptographic algorithms can be implemented. Many of
the machine learning algorithms that are applied in cryptography are
based on neural networks which can be implemented using SN P sys-
tems. In this paper, we propose a new type of SN P system called Anti
Spiking Neural Tree Parity Machine. The system is inspired by the way
in which a Tree Parity Machine works and is constructed using SN P sys-
tems with anti-spikes. Based on the new system we propose a novel key
agreement protocol that allows two parties to communicate over a public
channel and obtain a secret shared key. We perform multiple experiments
in which we show the efficiency of our protocol and its security.

Keywords: Spiking Neural P system - Anti-spikes - Tree Parity Machine
- Cryptography - Key agreement protocol.

1 Introduction

Spiking neural P systems are a subclass of P systems that is inspired by how the
biological neurons work and communicate [8]. Many types of SNP systems have
been developed over time. For example, there are SNP systems with astrocytes
[16], with communication on request [15], with polarizations [24], with colored
spikes [20] or asynchronous systems [3]. In this work, we use a variant of the SN
P system with anti-spikes [14]. Although we are using the original model of SN
P with anti-spikes there are several other variants of this system such as systems
without the annihilating priority [23] or systems with multiple channels [21].
The main application of an SN P system is in the construction of modern
machine learning algorithms, especially in the design of specific classes of neural
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networks [4]. Although these types of neural networks are mostly used to solve
classification problems, they can also be used for cryptographic purposes [19,
25]. For example, in [6] the authors proposed a new implementation of the RSA
algorithm using SN P systems.

One special class of cryptographic algorithms is the one that performs the
key agreement. This kind of algorithm allows two parties to communicate over a
public channel and establish a shared secret key. Most key agreement algorithms
are based on theoretical assumptions from number theory such as the hardness
of integer factorization or the hardness of the discrete logarithm problem [7].
These problems can be solved in polynomial time using a quantum computer
[18]. For this reason, researchers are investigating new constructions for key
agreement algorithms. One such construction is the Tree Parity Machine (TPM)
[11]. A TPM is a three-layer neural network and the protocol for key agreement
is based on the phenomenon of synchronization of two neural networks [12].

1.1 Related work

There are many papers regarding key agreement protocols based on the synchro-
nization of neural networks.

In [13] the authors proved that given the fact that the inputs are in the
range [—L, L] the synchronization time increases by L? while the probability of
the attacker succeeding decreases exponentially by L. In [1] and [2]| there are
multiple strategies proposed for improving the security of the TPM-based key
agreement protocol. The main idea is to obfuscate the outputs exchanged by the
two legitimate parties so that an attacker cannot access them. The disadvantage
of this approach is that it requires that the two parties have access to a common
secret until the protocol is run.

In [9] the authors proposed a method for verifying the synchronization status
of two TPMs. A public multivariable polynomial P is considered. The weights of
the TPM represent the inputs for the polynomial P. Both parties compute and
publish the value of the polynomial using the weights of their TPM. If the values
are equal then the two TPMs are fully synchronized. The paper also shows that
an attacker could not infer the weights based on the output of the polynomial
using brute force or genetic searching algorithms.

In [5] the authors used complex numbers to represent the inputs, the weights,
and the output of the TPM. The idea is to use the imaginary and real parts of
a complex number to form the shared key. In this way, one run of the protocol
will produce two keys. In [17] the authors tested more than 15 million combina-
tions of TPM parameters to determine the most suitable ones to generate 512
bits RSA keys. For each combination, the authors analyzed the impact on the
synchronization time and the security.

In [22] the authors generalize the original architecture by allowing the hidden
layer to have an arbitrary number K of neurons and the input neurons to have
non-binary values. By allowing non-binary input values, the time required for
full synchronization decreases. The paper also studies the security of the protocol
from the perspective of a Man-in-the-Middle attack. An attacker who intercepts
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the inputs and the outputs exchanged by the legitimate parties can synchronize
a third TPM given enough information. Since the two TPMs have a low syn-
chronization time, the chances of an attacker succeeding decrease. The paper
shows a series of experiments that investigate the effects of the TMP parameters
on the synchronization time and the security of the protocol. The authors also
propose the use of entropy to measure the quality of the output key.

In [10] the authors proposed a new TPM architecture in which the inputs, the
weights, and the outputs are vectors. In this way, a single run of the protocol
will produce multiple keys. The paper studies the efficiency and the security
of the proposed protocol. It also proposes some mathematical formulas for the
synchronization time and the probability that the attacker will be successful
depending on the parameters of the model.

1.2 Owur contributions

In this paper, we propose a new type of SN P system with anti-spikes that is
inspired by the construction of a TPM. We use this new system, to propose
a new key agreement protocol that does not base its security on any number-
theoretical problem. We conduct experiments that analyze various aspects of the
protocol and compare the novel protocol with its classical counterpart based on
TPMs.

The rest of the paper is organized as follows: Section 2 describes the new SN P
systems with anti-spikes, called the Anti-Spiking-Neural-Tree-Parity-Machine P
system, ASNTPM P system for short. Also in Section 2, we describe the proposed
key agreement protocol. Section 3 presents the experimental results regarding
the efficiency of the protocol, its security, and the cryptographic quality of the
generated key. Section 4 is left for the conclusions and further directions of
research.

2 A key agreement protocol based on ASNTPM P
systems

This section introduces a new SN P system named Anti-Spinking Neural Tree
Parity Machine (ASNTPM P system). The system is inspired by the construction
of a TPM and is used to implement a new key agreement protocol. Experimental
results show that the new protocol based on ANSTMP-systems substantially
improves synchronization time.

2.1 ASNTPM P system

An ASNTPM P system can be viewed as a three-layer neural network. The
input layer is partitioned into k£ groups each containing n neurons. Each group
is connected to a neuron from the hidden layer and all neurons from this layer
are connected to a single output neuron. The network can be visualized in Fig.1.
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Definition 1. An Anti-Spiking Neural Tree Parity Machine P system is defined
as the following construct:
I = (O; {Uinputl s Tinputyy -+ Oinputy, }7 {Uhiddenl y Ohiddenss -++y O hidden, }7 Ooutputs Na Ka La sYyno, f)

where:

1. O = {a,a} is an alphabet formed by two symbols:
(a) The symbol a denotes a spike
(b) The symbol @ denotes an anti-spike
2. Oinput,; is an input neuron formed by the folowing tupple (n;, 725, Ri;):
(a) m;; denotes the number of spikes from the neuron
(b) 7;; denotes the number of anti-spikes from the neuron
(¢) R;j is a finite set rules of the following forms:
i. Firing rules: b¢ — b>*"ii where b € {a,a}, 1 < ¢ < L and w;; is a
positive integer that will be defined below .
If at the moment ¢ a neuron has c spikes or anti-spikes it will fire,
consuming either c¢ spikes or ¢ anti-spikes and sending ¢ spikes or ¢
anti-spikes to the hidden neuron op;dden, with which it is connected.
At moment ¢t = 0, there are no spikes or anti-spikes in the neuron
i.e. Ni; = 07 ﬁij =0.
ii. Annlihilation rule: aa — A
This rule indicates that at any moment ¢, an input neuron cannot
contain spikes and anti-spikes simultaneously. If a spike and an anti-
spike are present in an input neuron, they will annihilate each other
instantaneously.
Here, 1 <¢< Kand1<j<N.
3. Ohidden, 18 & hidden neuron formed by the folowing tupple (n;,7;, R;):
(a) n; denotes the number of spikes from the neuron
(b) m; denotes the number of anti-spikes from the neuron
(¢) R; is a finite set of rules of the following form:
i. Firing rules: rule of the form b — b;d where b € {a,a}, 1 < c¢ < L?.
If at the moment ¢ the neuron has ¢ spikes then it will fire consuming
c spikes and sending 1 spike to the output neuron. If at the moment ¢
the neuron has ¢ anti-spikes then it will fire consuming ¢ anti-spikes
and sending 1 anti-spike to the output neuron. At moment ¢ = 0,
there are no spikes or anti-spikes in the neuron i.e. n; =0, n; = 0.
ii. Annlihilation rule: aa — A
This rule indicates that at any moment ¢, a hidden neuron cannot
contain spikes and anti-spikes simultaneously. If a spike and an anti-
spike are present in a hidden neuron, they will annihilate each other
instantaneously.
Here, 1 <: < K.
4. 0output is the output neuron formed by the folowing tupple (nout, Tout, Tout):
(a) Nyt denotes the number of spikes from the neuron
(b) Tiout denotes an anti-spikes from the neuron
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(¢) Tout is an annihilation rule of the form aa — A. The rule indicates that
the output neuron cannot hold spikes and anti-spikes simultaneously.
At moment ¢t = 0, there are no spikes or anti-spikes in the neuron i.e.
Nout = 07 Tout = 0.
The output of the system is the number of spikes or anti-spikes from this
neuron.
syn; is the set of synapses at the computational step t. A synapse if defined
by the triplet (o;,0;,w;;) meaning the existence of a synapse between the
neuron o; and the neuron ;. Here, o; and o; can be input, hidden or output
neurons. The weight on the synapse, w;; € Z7" has the role to amplify the
spikes or the anti-spikes passing through the synapse e.g. if the neuron o;
fires sending c spikes or anti-spikes to the neuron o; and the weight on the
synapse is w;; then the neuron o; will receive ¢ * w;; spikes or anti-spikes.
syno represents the set of synapses at moment ¢ = 0. Initially, the weights
between the input and the hidden neurons are randomly chosen from the
set {1,2, ..., L}. The weights between the hidden and the output neurons are
always 1.
N is the number of input neurons connected to a single hidden neuron.
K is the number of neurons hidden neurons.
L represents the maximum value of a weight i.e. 0 < w;; < L.
The learning function f has the role of updating the weights on the synapses
according to (1):
syngy1 = f(syn) (1)

The input of the system is defined by the vector X = (z11,212,..., TxN),

—L <2y < Lywyy #0,V1 <7 < K,1 <j<N.If z; <0 then the input
neuron o;; will receive from the environment |z;;| anti-spikes. If on the other
hand, z;; > 0 then the input neuron o;; will receive from the environment z;;

spikes.

The input neurons fire sending all the spikes or all the anti-spikes to the hid-

den neurons. The number of spikes or anti-spikes is amplified by the correspond-
ing weight of the synapse. After the annihilation rule is applied the maximum

number of times in each hidden neuron, they send one spike or one anti-spike to

1.

2.

3.

the output neuron. After the annihilation rule is applied the maximum number
of times in the output neuron, it can be in one of the following states:

The output neuron is empty if the number of spikes received from the hidden
neurons is equal to the number of anti-spikes.

The output neuron contains one spike if the number of spikes received from
the hidden neurons is greater than the number of anti-spikes.

The output neuron contains one anti-spike if the number of spikes received
from the hidden neurons is smaller than the number of anti-spikes.

The output of the system is the state of the output neuron. The system

evolve by the application of the learning function f which modifies the weights
of the synapses between the input and the hidden neurons.



6 Mihail Plesa

Fig. 1. A visual representation of an ASNTPM P system

2.2 The novel key agreement protocol

The goal of the protocol is for two parties, named Alice and Bob, to compute
a secret shared key. All the communications take place over a public channel so
that any message between Alice and Bob can be intercepted by a third malicious
actor, named Eve. We suppose that Eve can read any message but it cannot alter
it. The protocol is secure if Eve cannot compute the secret key between Alice
and Bob.

Each of the two participants has a local ASNTPM P system to which only he
has access. The main idea of the key agreement protocol is to synchronize the two
P systems using the learning function. Two ASNTPM P systems are synchro-
nized if all the synapses have the same weights. The shared secret key between
Alice and Bob will be these weights. The protocol consists of the following steps:

1. Both participants agree over a public channel on the parameters N, K and
L of the ASNTPM P system.

2. Both participants exchange over a public channel the input vector X =
(.’Ell,xlg,...,l’}(]\]), —L S Lij S L,l S 1 S K, 1 S] S N. Both ASNTPN P
systems will receive input from the environment according to the vector X.

3. Each participant computes the output of their ASNTPM P system and pub-
lishes the result.

4. If the outputs are the same i.e. both Alice and Bob read the same number
of spikes or the same number of anti-spikes in the output neuron of their
ASNTPM P system, then each of them will update the weights of their
system according to the learning function f.

5. The steps 2-4 are repeated until both ASNTPM P systems are synchronized.

Let Oajice(o) and Opop(0) be the number of spikes contained in the o neu-
ron of Alice’s respectively Bob’s ASNTPM P system. Similarly, let O g45c.(0) and
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OBpop(0) be the number of anti-spikes contained in the o neuron of Alice’s respec-
tively Bob’s ASNTPM P system. The output of the two ASNTPM P systems
are the same if the expression defined in (2) is true:

[[OAlice(Uoutput) = OBob(Uoutput)] \ [UAlice (Uoutput) = bBob(Uoutput)]] (2)

The learning function is described by the following algorithm, where X €
{Alice, Bob}:
fori=1; i<K; i=i+1do B
if [[OX (O'hiddem) =0Ox (Uoutput)] \ [OX (Uhiddeni) =0x (a'output)]]
then
forj=1;, < N; j=j5+1do
if Ox (Uoutput) > (0 then
‘ Wij = ’wij + OX(Umputij)’
else -
if Ox(Goutput) > 0 then
| wij = |wij — Ox (Ginputs; )|
end

end

end

if w;; > L then
| wij =L

end

end

end

Algorithm 1: The learning function
This learning function is an adaptation of the Hebbian and Anti-Hebbian
learning rules used in classical TPM constructions.

3 Experimental results

In this section, we present the experimental results regarding the novel key agree-
ment protocol. The experiments aim to evaluate the efficiency of the new proto-
col compared to the classical TPM based protocols, the security of the protocol
against a Man-in-the-middle attack, and the cryptographic quality of the gener-
ated shared key.

3.1 The efficiency of the proposed protocol

The efficiency of the protocol is reflected by the synchronization time, i.e. the
number of computation steps required by the two ASNTPM P systems to syn-
chronize i.e. we count how many times the steps 2-4 from the protocol are exe-
cuted. We tested multiple variations of the parameters IV and K of the ASNTPM
P systems but we maintained the L limit constant to 256. Since the inputs are
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Table 1. The efficiency of the protocol

K IN Syncronization time
Minimum|Maximum|Mean|Standard deviation

4 8 10 67 31.62 12.26

4 |16 15 135 39.02 16.39

8 | 16 23 178 65.45 23.72

4 | 32 22 95 49.99 17.44

8 | 32 23 162 77.30 25.37

16 | 32 37 193 112.78 32.68

4 | 64 22 178 60.15 23.03

8 | 64 38 182 86.39 29.78

16 | 64 61 218 128.64 36.48

32 | 64 72 392 188.32 54.15
1.0 1
0.8
0.6 1
0.4 -
0.2

J —— ASNTPM P System Protocol
0.0 TPM based Protocol
(I) 5:’.) lCIOU lSIO 2[IJO 25IO
Current iteration

Fig. 2. Efficiency comparison between TPM and ASNTPM P system
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randomly generated, we conducted 100 simulations for each set of parameters.
The results are shown in Table 1.

Table 1 shows that by increasing the K parameter and holding N constant,
there is an increase in the synchronization time. Similarly, increasing the N
parameter and holding the K constant, increases the synchronization time.

A comparison between the novel protocol based on ASNTPM P system and
the classical protocol based on TPM is presented in Table 2. The comparison is
made concerning the mean and the standard deviation of the synchronization
time.

Table 2. The efficiency of the protocol

K |IN Syncronization time
TPM ASNTPM P system
Mean|Standard deviation|Mean|Standard deviation
4 8 1138.49 64.23 31.62 12.26
4 | 16 [135.16 63.81 39.02 16.39
8 | 16 [247.18 80.78 65.45 23.72
4 | 32 |138.77 52.06 49.99 17.44
8 | 32 (278.16 89.87 77.30 25.37
16 | 32 [450.63 90.65 112.78 32.68
4 | 64 [149.59 53.45 60.15 23.03
8 | 64 [319.74 102.59 86.39 29.78
16 | 64 [519.39 122.25 128.64 36.48
32 | 64 |727.02 130.50 188.32 54.15

The protocol based on ASNTPM P systems is much more efficient than the
classical protocol based on TPM. Also, Table 2 shows that the standard devia-
tion is lower in the case of the novel protocol. To better visualize the difference
in efficiency between the two protocols, Figure 2 shows the synchronization per-
centage after each iteration computational step when K = 8 and N = 32.

3.2 The cryptographic quality of the key

The purpose of the protocol is for two participants to compute a secret shared key
over a public channel. The key is then used in various cryptographic operations
e.g. encryption, authentification, etc. The quality of the key is measured by its
entropy. A low entropy level means that the key has little embedded randomness
and therefore an attacker can deduce it. In the case of our protocol, the key is
formed by the values of the weights which are positive numbers bounded by
the parameter L of the ASNTPM P system. Thus we can view the system as
a source I that generates symbols ki, ko, ..., k, with probabilities p1, po, ..., Dr,
0<k <L, 0<p; <1,Vi,1 <i<r. The entropy of the source I measured in
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bits is defined in (3):
H(I)=— Zpilogﬂ?i (3)
i=1

We make 100 simulations of the protocol for each configuration of the pa-
rameters K and N of the ASNTPM P systems. Table 3 shows the mean entropy
of the generated keys for both the novel and the classical protocol.

Table 3. The mean entropy of the key

K IN Mean entropy of the key
ASNTPM P system|TPM
Mean Mean
4 8 4.86 4.82
4 | 16 5.87 5.79
8 | 16 6.84 6.79
4 | 32 6.86 6.78
8 | 32 7.85 7.7
16 | 32 8.82 8.77
4 |64 7.87 7.76
8 | 64 8.85 8.76
16 | 64 9.83 9.76
32 | 64 10.83 10.76

The two protocols produce keys with almost the same level of entropy al-
though in our case, the entropy was slightly better. It can also be observed that
increasing the parameters K and N also increases the entropy of the key. Figure
3 displays the distribution of the key elements when K = 16 and N = 64. A key
used for cryptographic purposes must have a distribution as close as possible to
the uniform distribution which is the case of the key produced by our protocol.

3.3 Security against Man-in-the-Middle Attack

Since all the information needed to synchronize the two ASNTPM P systems are
transmitted over a public channel, an attacker named Eve can try to synchronize
his system with the systems of the two legitimate participants Alice and Bob.
The attack methodology is described by the following protocol:

1. Eve intercepts the parameters exchanged by Alice and Bob in step 1 of the
protocol and instantiates its ASNTPM P system.

2. Eve intercepts the input vector X transmitted in step 2 of the protocol and
initializes the input neurons of its ASNTPM P system in the same way as
Alice and Bob.

3. Eve computes the output of its ASNTPM P system and intercepts the results
announced by Alice and Bob.
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0 50 100 150 200 250

Fig. 3. The distribution of the key

4. If Eve’s output is the same as the outputs produced by Alice and Bob then
she will update the weights of his system according to the learning function
f described in section 2.2.

5. The steps 2-4 are repeated until the ASNTPM P systems of Alice and Bob
have been synchronized and they interrupt the exchange of information over
the public channel.

The attacker has success if he manages to synchronize his ASNTPM P system
with the systems of Alice and Bob simultaneously with them. The efficiency of
the protocol directly affects its security. A protocol that performs fewer compu-
tational steps will not give the attacker a window of time large enough for him to
synchronize simultaneously with the legimite participants. Figure 4 shows that
at the moment when Alice and Bob’s ASNTPM P systems are synchronized, Eve
managed to synchronize his ASNTPM P system for only 0.4%. The experiment
was performed with K = 16 and N = 64.

Table 4 shows a comparison between the mean synchronization percentage
of Eve when the attack is mounted against our protocol and when the attack
is mounted against the classical protocol. The results confirm that a lower syn-
chronization time i.e. the case of our protocol implies a lower synchronization
percentage of the attacker. For each set of parameters, 100 simulations were
made.



12

Syncronization percentage

Mihail Plesa

Table 4. The syncronization percentage

K IN Mean syncronization percentage of the attacker

ASNTPM P system|TPM

Mean Mean

4 8 0.05 % 0.68 %

4 | 16 0.02 % 0.40 %

8 | 16 0.01 % 0.45 %

4 | 32 0.01 % 0.53 %

8 | 32 0.02 % 0.40 %

16 | 32 0.02 % 0.30 %

4 | 64 0.02 % 0.34 %

8 | 64 0.02 % 0.30 %

16 | 64 0.03 % 0.34 %

32 | 64 0.03 % 0.32 %
1.0
0.8
0.6

—— Alice-Bob Syncronization
Alice-Bob-Eve Syncronization
0.4 -
0.2 1
0.0 1
(I) 5ID l[I)CI lSICI 200

Current iteration

Fig. 4. The attack
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4 Conclusions and further directions of research

This article presented a new P system called Anti Spiking Neural Tree Parity
Machine (ASNTPM P system). Based on the new system, we proposed a novel
key agreement protocol. We conducted multiple experiments that studied the
efficiency of the new protocol, the cryptographic quality of the shared secret
key, and the security against Man-in-the-Middle attacks. Our protocol is more
efficient than the original key agreement protocol based on TPMs [11].

We have shown experimentally that security against Man-in-the-Middle-Attacks
of the protocol is related to the synchronization time i.e. the number of steps ex-
ecuted by the protocol until the weights of both systems coincide. We measured
the synchronization percentage of the attacker when the protocol finishes exe-
cuting and showed that our new protocol is much more secure than the classical
one.

A further direction of research is the extension of the experiments. Feature
work might try several combinations of parameters for the ASNTPM and deter-
mine which one is the most efficient or the most secure. In this paper, we tried
the most used parameters from the literature on TPM. In future work, perhaps a
theoretical connection can be established between the parameters of the model,
its efficiency, and its security.

Another direction of research is to study other connections between the field
of cryptography and SN P systems. Given the fact the SN P systems are Turing
complete, they can be used to implement various cryptographic primitives such
as hash functions, symmetric and asymmetric ciphers, MACs, or cryptographic
primitives based on elliptic curves.
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